Math, asked by sammm55, 4 months ago

25-4x< or equal to 16. find the smallest value of x when (i)x belongs to R (ii)x belongs to Z​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

↝ Given inequality is

\rm :\longmapsto\:25 - 4x \leqslant 16

On Subtracting 25 from both sides, we get

\rm :\longmapsto\:25 - 4x - 25 \leqslant 16 - 25

\rm :\longmapsto\: - 4x \leqslant  - 9

On dividing both sides by - 4, we get

\bf\implies \:x  \geqslant \dfrac{9}{4}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{ \boxed{ \because \:  \bf \:  - x   \leqslant    - y  \: \implies \:   x   \geqslant   y}}

Case :- 1 When x belongs to R

 \red{\bf :\longmapsto\:x \:  \in \:  \bigg[\dfrac{9}{4} , \:  \infty ) }

Case :- 2 When x belongs to Z

 \red{\bf :\longmapsto\:x \:  =  \{3, \: 4, \: 5, \: 6, \: . \: . \: . \}}

Additional Information :-

\green{ \boxed{ \bf \: x &gt; y  \: \implies \:  - x &lt;  - y}}

\green{ \boxed{ \bf \: x  &lt;  y  \: \implies \:  - x  &gt;  - y}}

\green{ \boxed{ \bf \: x   \geqslant   y  \: \implies \:  - x   \leqslant   - y}}

\green{ \boxed{ \bf \: x   \leqslant   y  \: \implies \:  - x   \geqslant   - y}}

\green{ \boxed{ \bf \: x   \leqslant    -  \: y  \: \implies \:  - x   \geqslant  y}}

\green{ \boxed{ \bf \: x   \geqslant    -  \: y  \: \implies \:  - x   \leqslant  y}}

\green{ \boxed{ \bf \: xy &gt; 0 \implies \: x &gt; 0, \: y &gt; 0 \:  \: or \:  \: x &lt; 0, \: y &lt; 0}}

\green{ \boxed{ \bf \: xy  &lt;  0 \implies \: x &gt; 0, \: y  &lt;  0 \:  \: or \:  \: x  &lt;  0, \: y  &gt;  0}}

Similar questions