Math, asked by dangermalik4156, 4 days ago

25 (a+b)^2 - 16 (a-b)^2
Find answer by using factorisation​

Answers

Answered by ParikshitPulliwar
1

Answer: 25(a+b)^2 - 16(a-b)^2

=> [ 5(a+b)]^2 - [ 4(a-b)]^2

=> (5a +5b)^2 - (4a-4b)^2

=> (5a +5b - 4a +4b) ( 5a +5b +4a - 4b)

=> (a +9b) (9a+b)

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \: 25 {(a + b)}^{2} - 16 {(a - b)}^{2}  \\

can be rewritten as

\rm \: =  5 \times 5 \times  {(a + b)}^{2} - 4 \times 4 \times  {(a - b)}^{2}  \\

\rm \:  =  \:  {(5[a + b])}^{2} -  {(4[a - b])}^{2}  \\

\rm \:  =  \:  {(5a + 5b)}^{2} -  {(4a - 4b)}^{2}  \\

We know,

\boxed{ \rm{ \: {x}^{2} -  {y}^{2} = (x + y)(x - y) \:  \: }} \\

Now, here

\rm \: x = 5a + 5b \\

and

\rm \: y = 4a - 4b \\

So, on substituting the values, we get

\rm \:  =  \: (5a + 5b + 4a - 4b)(5a + 5b - 4a + 4b) \\

\rm \:  =  \: (9a + b)(a + 9b) \\

Hence,

\rm\implies \:25 {(a + b)}^{2} - 16 {(a - b)}^{2}=(9a + b)(a + 9b) \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions