Math, asked by swamynathan7708, 2 months ago

25. If the mean of five observations x, x+2, X+4. x+6. x+3 is 11 then find the value ofx.
26. The diagonals of a rhombus are 24 cm and 10 cm. Find its area and perimeter.​

Answers

Answered by wayne05
1

Answer:

25.   x = 8

26.   Area = 120cm^{2} , Perimeter = 52cm

Step-by-step explanation:

25.

mean = 11 -------( given )

⇒No. of observations = 5

⇒Mean = \frac{ Sum of Observations }{ No. of Observations  }                              

⇒11 = \frac{x + 2 + x + 4 + x + 6 + x + 3}{5}

⇒11 = \frac{ x + x + x + x + x + 2 + 4 + 6 + 3}{5}

⇒11 = \frac{5x + 15}{5}

⇒11 = \frac{5 ( x + 3 ) }{5}

⇒11 = x + 3

⇒ x + 3 = 11

⇒ x = 11 - 3 = 8

∴ x = 8

∴ The value of x is 8

26.

Diagonals of Rhombus ⊥ bisect each-other ----( rhombus property) ---- (1)

⇒Taking rhombus ABCD

⇒AC = 24cm

⇒BD = 10cm

From (1),

⇒AO = CO, BO = DO

⇒AO + CO = AC

⇒AO + AO = 24cm

⇒2AO = 24

⇒AO = 24/2 = 12cm

∴ AO = 12cm = CO

⇒BO + DO = BD

⇒BO + BO = 10cm

⇒2BO = 10cm

⇒BO = 10/2 = 5cm

∴ BO = 5cm = DO

ΔAOB, ∠AOB = 90°

AB^{2} = AO^{2} +BO^{2}

AB^{2} = 12^{2} + 5^{2} \\\\AB^{2} = 144 + 25\\\\AB^{2} = 169\\\\AB = \sqrt{169}  \\\\AB = 13cm

AB = BC = CD = AD = 13cm ---------( All sides of Rhombus are equal )

⇒Area Of Rhombus = \frac{1}{2} × d_{1} × d_{2}

⇒Ar (ABCD) = \frac{1}{2} × 24 × 10

⇒Ar (ABCD) = 12 × 10

∴ Ar (ABCD) = 120cm^{2}

⇒Perimeter of Rhombus = 4 × s

⇒Perimeter (ABCD) = 4 × AB

⇒Perimeter (ABCD) = 4 × 13 = 52cm

∴ Perimeter (ABCD) = 52cm

 

Similar questions