Math, asked by sureshchandswami1969, 6 months ago

25 से 180 तक की सम संख्याओं का औसत क्या
होगा?​

Answers

Answered by Anonymous
6

\huge{\mathbb{\red{ANSWER:-}}}

25 --------> 180

26 , 28 , 30 , 32 ,..........., 180

a = 26

d = 2

An = 180

\small\boxed{An=a+(n-1)d}

where-

a= first \: term

 d = common \: difference

 \: \: \: \: An = last \: term

 \: \: \: 180 = 26 + (n-1)2

 \: \: \: 154 = 2(n - 1)

 \: \: (n - 1) = 77

 \: \: \: \: n = 78

Sum \: of \: all \: even \: numbers \: from

25 \: to \: 180.

\small\boxed{Sn=\dfrac{n}{2}[a + An]}

 \: \: \: \: \: n = Total \: terms = 78

S(78) =\frac{78}{2}[26 + 180]

 \: \: \: = 39 * 206

 \: \: \: = 39 * (200 + 6)

 \: \: \: = 7800 + 234

 \: \: \: = 8034

Now ,

\small\boxed{average=\dfrac{Sum \: of \: all \: terms}{Total \: terms}}

 Average \: of \: all \: 78 \: even \: no.-

=\frac{8034}{78}

=\frac{39 * 206}{78}

=\frac{206}{2}

= 103

Short \: explanation:-

In \: the \: case \: of \: consecutive \: terms-

Average=\dfrac{1st \: term + last \: term}{2}

\: \: \: \: \: \: =\frac{26+180}{2}

\: \: \: \: \: \: =\frac{206}{2}

\: \: \: \: \: \: = 103

Similar questions