Math, asked by mayankkumar8, 10 months ago

26. 3x^2 - 2√6x+2=0​

Answers

Answered by Nereida
48

\huge\star{\purple{\underline{\mathfrak{Answer :-}}}}

x = (\sqrt {\dfrac {2}{3})} \:and\; (\sqrt {\dfrac {2}{3}})

\huge\star{\purple{\underline{\mathfrak{Explanation :-}}}}

Let solve this quadratic equation by quadratic formula for Sridharacharya formula :-

 \dfrac {-b \pm \sqrt {{b}^{2} - 4ac}}{2a}

Putting in the values :-

\leadsto  {\dfrac {-(-2\sqrt {6})\pm \sqrt {{(-2\sqrt {6}})^{2}-4 (3)(2)}}{2 (3)}}

\leadsto  {\dfrac {2\sqrt {6}\pm \sqrt {(4)(6)-24}}{6}}

\leadsto  {\dfrac {2\sqrt {6} \pm \sqrt {24-24}}{6}}

\leadsto  {\dfrac {2\sqrt {6} \pm \sqrt {0}}{6}}

\leadsto  {\dfrac {\cancel {2}\sqrt {6}}{\cancel {6}\:\:3}}

\leadsto{\dfrac {\sqrt {6}}{3}}

Simplifying further,

\leadsto{\dfrac {\sqrt {2}\times\cancel{\sqrt{3}}}{\sqrt {3}\times\cancel{\sqrt{3}}}}

\leadsto  {\dfrac {\sqrt {2}}{\sqrt {3}}}

So, the roots are :- x = (\sqrt {\dfrac {2}{3})} \:and \:(\sqrt {\dfrac {2}{3}})

_____________________

NOTE :-

The discriminant here that is \sqrt {{b}^{2}-4ac} is equal to 0.

Hence, the roots are real and equal.

_____________________

Answered by Anonymous
12

 \purple{ \sf \large \underline{ \underline{ \: Solution : \:  \:  \: }}}

Given ,

The quadratic equation is

3x² - 2√6x + 2 = 0

By prime factorisation method ,

 \sf \hookrightarrow 3 {x}^{2}  - 2 \sqrt{6}  + 2 = 0 \\  \\  \sf \hookrightarrow3 {x}^{2}  -  \sqrt{6}x  -  \sqrt{6}x + 2 \\  \\  \sf \hookrightarrow \sqrt{3} x( \sqrt{3} x -  \sqrt{2} ) -  \sqrt{2} ( \sqrt{3} x -  \sqrt{2} ) \\  \\  \sf \hookrightarrow (\sqrt{3}x -  \sqrt{2}  )( \sqrt{3}x -  \sqrt{2}  ) \\  \\  \sf \hookrightarrow x =  \frac{ \sqrt{2} }{ \sqrt{3} }  \\  \\  \sf \hookrightarrow x =  \frac{ \sqrt{6} }{3}

Hence , the roots of given quadratic equation is √6/3 and √6/3

Similar questions