Math, asked by suryaamal3, 1 month ago

26. Find the area of a triangle whose vertices are A(-3,6), B(5,0) and C(-6,2).​

Answers

Answered by datars211gmilcom
4

Answer:

answer is given in above photo

Attachments:
Answered by ItzWhiteStorm
11

Given:-

  • Vertices of triangle are A(-3,6),B(5,0) and C(-6,2).

To find:-

  • Area of triangle

Required Formula:-

  • Area of ∆ ABC = ½ × [x₁(y₂-y₃) + x₂(y₃-y₁) + x₃(y₁-y₂) ]

Solution:-

  • Area of triangle ABC is 25 sq.units

Step-by-step explanation:

\\ :\implies\sf{Area \: of \: \triangle \:   = \frac{1}{2}  \times \bigg[ - 3(0 - 2) + 5(2 - 6) - 6(6 - 0) \bigg]} \\ \\ :\implies\sf{Area \: of \: \triangle \:   = \frac{1}{2}  \bigg[ - 3( - 2) + 5( - 4)  - 6(6) \bigg] } \\ \\ :\implies\sf{Area \: of \: \triangle \:   =  \frac{1}{2} \bigg[6 + ( - 20)  - 36 \bigg] } \\ \\ :\implies\sf{Area \: of \: \triangle \:   = \frac{1}{ \cancel{2}}\times    \:  \cancel{- 50} \: } \\ \\ :\implies  \underbrace{\boxed{\frak{Area \: of \: \triangle \:   = 25}}} \:  \gray{ \bigstar} \\  \\

  • ∴ Hence,The area of triangle is 25 sq.units.
Similar questions