Math, asked by salimatamboli8810, 3 months ago


26)
If sum of 4 consecutive natural odd numbers is 32 then find smallest number​

Answers

Answered by Anonymous
7

Given :

  • Sum of 4 consecutive natural odd numbers = 32

To find :

  • Smallest number.

Solution :

Let the number be x

Here,

The four natural odd numbers with variables are :

  • x
  • x + 2
  • x + 4
  • x + 6

Sum of these = 32

Equation will be :-

  • x + x + 2 + x + 4 + x + 6 = 32

Calculations :-

 \bf \implies x + x + 2 + x + 4 + x + 6 = 32 \\  \\ \bf \implies4x  + 12=32 \\  \\  \bf \implies 4x = 32 - 12 \\  \\ \bf \implies 4x = 20 \\  \\ \bf \implies x =  \dfrac{20}{4}  \\  \\ \bf \implies x = 5

Therefore, The smallest number is 5.

Other odd natural number are :-

  • x + 2 = 5 + 2 = 7
  • x + 4 = 5 + 4 = 9
  • x + 6 = 5 + 6 = 11

All 4 numbers are, 5,7, 9,11.

Verification :-

 \bf \implies x + x + 2 + x + 4 + x + 6 = 32 \\  \\ \bf \implies 5 + 5 + 2 + 5 + 4 + 5 + 6 = 32 \\  \\ \bf \implies 32 = 32  \\  \\ \bf LHS = RHS \\  \\ \bf Hence, Verified.

Answered by Anonymous
130

Given :-

  • Sum of 4 consecutive natural odd number = 32

To find :-

  • Smaller number.

Solution :-

  • Let the number be x

Here,

The four natural odd numbers with variables are :

  • {\tt{x}}
  • {\tt{x + 2}}
  • {\tt{x + 4}}
  • {\tt{x + 6}}

Sum of these = 32

Equation will be :

  • {\tt{x + x + 2 + x + 4 + x + 6 = 32}}

Calculations :

:\implies{\sf{x + x + 2 + x + 4 + x + 6 = 32}}

 \: \: \:  \:  \: :\implies\bf{\sf{4x + 12 = 32}}

 \:  \:  \: \: \: \: \:  \:  \: :\implies\sf{\sf{4x = 32 - 12}}

 \:  \:  \:  \: \: \: \: \: \: \: \: \:  \:  \: :\implies\sf{\sf{4x = 20}}

 \:  \:  \:  \:  \: \: \: \: \: \: \: \: \: \: \:  \:  \:  \: :\implies\sf{\bf{x =  \frac{20}{4}}}

 \:  \:  \:  \:  \: \: \: \: \: \: \: \: \: \: \: \:  \:  \:  \:  \:  \:  \:  \: :\implies\bf\boxed{\bf\underline\red{x = 5}} \large{\bf\green{✓}}

Therefore, are smallest number is 5.

Other odd natural number are :

  • {\tt{x + 2 = 5 + 2 = 7}}
  • {\tt{x + 4 = 5 + 4 = 9}}
  • {\tt{x + 6 = 5 + 6 = 11}}

All 4 numbers are , 5 , 7 , 9 , 11.

{\boxed{\boxed{\rm{Verification}}}} \large{\bf\green{✓}}

:\implies{\sf{x + x  + 2 + x + 4 + x + 6  = 32}}

:\implies{\sf{5 + 5 + 2 + 5 + 4 + 5 + 6 = 32}}

 \:  \:  \: \:\:\:\:\:\: \:\:\:\: \: \: \: \: \: \:  \: :\implies\bf \boxed{\bf\underline\green{32 = 32}} \large{\bf\green{✓}}

 \:  \:  \:  \: \: \: \: \: \: \: \: \:  \:  \: \large{\bf\green{★}}{\boxed{\boxed{\bf{LHS = RHS}}}} \large{\bf\red{★}}

 \:  \:  \:  \:  \: \: \: \:  \:  \: \large{\bf\red{★}}{\boxed{\boxed{\bf{Hence Verified,}}}} \large{\bf\green{★}}

Similar questions