Math, asked by mariakhan200131, 3 months ago

27. Convert the following distribution table to less than type cumulative frequency distribution and draw
its ogive:
CI 5-10 10-15 15-20 20-25 25-30 30-35 35-40
f 2 12 2 4 3 4 3​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given data is:

 \:  \:  \:  \:  \:  \:  \:  \:  \: \begin{gathered} \begin{array}{|c|c|} \bf{Class  \: Interval} & \bf{Frequency} \\ 5 - 10 & 2  \\10 - 15 & 12 \\15 - 20 & 2 \\20 - 25 & 4 \\25 - 30 & 3\\30 - 35 & 4\\35 - 40 & 3 \end{array}\end{gathered}

Now,

Let we construct

Less than Frequency distribution table

 \:  \:  \:  \:  \:  \:  \:  \:  \: \begin{gathered} \begin{array}{|c|c|} \bf{Less  \: than} & \bf{Cumulative \: Frequency} \\ 10 & 2  \\15 & 14 \\20 & 16 \\25 & 20 \\30 & 23\\35 & 27\\40 & 30 \end{array}\end{gathered}

Please find the attachment for ogive.

Additional Information :-

More than Frequency distribution table :-

 \:  \:  \:  \:  \:  \:  \:  \:  \: \begin{gathered} \begin{array}{|c|c|} \bf{More  \: than} & \bf{Frequency} \\ 5  & 30  \\10 & 28 \\15 & 16 \\20  & 14 \\25 & 10\\30  & 7\\35  & 3 \end{array}\end{gathered}

1. Ogives are used to find the median of given data graphically.

2. The point of intersection of less than ogive and more than ogive gives median.

Attachments:
Similar questions