Math, asked by singhsapan540, 3 days ago

27. Find the total surface area and lateral surface area of a shoe box whose length, breath, and height are 30CM, 25CM and 15 cm respectively.​

Answers

Answered by SachinGupta01
37

\underline{ \sf \large{Solution-} }

Here it is given that,

  • Length of shoe box (l) = 30 cm
  • Breadth of shoe box (b) = 25 cm
  • Height of shoe box (h) = 15 cm

Now,

➢ Total surface area = 2(lb+bh+lh)

 \tt \implies  2(30\times25  +25  \times 15+30\times15)

 \tt \implies  2(750  +375+450)

 \tt \implies  2(1575) =  \boxed{ \tt \red {3150 \: cm^{2} }}

Total surface area = 3150 cm²

Now,

➢ Lateral surface area = 2h(l+b)

 \tt \implies  2h(l+b)

 \tt \implies  2 \times 15(30+25)

 \tt \implies  30(55) =  \boxed{ \tt \red{1650 \: cm^{2} }}

Lateral surface area = 1650 cm²

Answered by StarFighter
36

Answer:

Given :-

  • A shoe box whose length, breadth and height are 30 cm, 25 cm and 15 cm respectively.

\\

To Find :-

  • What is the total surface area and lateral surface area of a shoe box.

\\

Formula Used :-

\clubsuit Total Surface Area or T.S.A. Of Cuboid Formula :

\small \bigstar \: \: \sf\boxed{\bold{\pink{Total\: Surface\:  Area_{(Cuboid)} =\: 2(lb + bh + hl)}}}\: \: \: \bigstar\\

where,

  • l = Length
  • b = Breadth
  • h = Height

\clubsuit Lateral Surface Area or L.S.A. Of Cuboid Formula :

\small \bigstar \: \: \sf\boxed{\bold{\pink{Lateral\: Surface\:  Area_{(Cuboid)} =\: 2 \times (l + b) \times h}}}\: \: \: \bigstar\\

where,

  • l = Length
  • b = Breadth
  • h = Height

\\

Solution :-

In case of total surface area of a shoe box :

Given :

  • Length = 30 cm
  • Breadth = 25 cm
  • Height = 15 cm

According to the question by using the formula we get,

\small \implies \bf T.S.A._{(Shoe\: Box)} =\: 2(lb + bh + hl)\\

\small \implies \sf T.S.A._{(Shoe\: Box)} =\: 2\bigg\{(30 \times 25) + (25 \times 15) + (15 \times 30)\bigg\}\\

\small \implies \sf T.S.A._{(Shoe\: Box)} =\: 2\bigg\{(750) + (375) + (450)\bigg\}\\

\small \implies \sf T.S.A._{(Shoe\: Box)} =\: 2\bigg\{750 + 375 + 450\bigg\}\\

\small \implies \sf T.S.A._{(Shoe\: Box)} =\: 2\bigg\{1125 + 450\bigg\}\\

\small \implies \sf T.S.A._{(Shoe\: Box)} =\: 2\bigg\{1575\bigg\}\\

\small \implies \sf T.S.A._{(Shoe\: Box)} =\: 2 \times 1575\\

\small \implies \sf\bold{\red{T.S.A._{(Shoe\: Box)} =\: 3150\: cm^2}}\\

\small \sf\bold{\purple{\underline{\therefore\: The\: total\: surface\: area\: or\: T.S.A.\: of\: shoe\: box\: is\: 3150\: cm^2\: .}}}\\

\\

In case of lateral surface area of a shoe box :

Given :

  • Length = 30 cm
  • Breadth = 25 cm
  • Height = 15 cm

According to the question by using the formula we get,

\dashrightarrow \bf L.S.A._{(Shoe\: Box)} =\: 2 \times (l + b) \times h\\

\dashrightarrow \sf L.S.A._{(Shoe\: Box)} =\: 2 \times (30 + 25) \times 15\\

\dashrightarrow \sf L.S.A._{(Shoe\: Box)} =\: 2 \times (55) \times 15\\

\dashrightarrow \sf L.S.A._{(Shoe\: Box)} =\: 2 \times 55 \times 15\\

\dashrightarrow \sf L.S.A._{(Shoe\: Box)} =\: 110 \times 15\\

\dashrightarrow \sf\bold{\red{L.S.A._{(Shoe\:  Box)} =\: 1650\: cm^2}}\\

\small \sf\bold{\purple{\underline{\therefore\: The\: lateral\: surface\: area\: or\: L.S.A.\: of\: shoe\: box\: is\: 1650\: cm^2\: .}}}\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions