Math, asked by nishant2996, 1 year ago

27. If sin (A + B) = sin A cos B+cos A sin B
and cos (A - B) = cos A cos B + sin Asin B,
find the values of (i) sin 75º and (ii) cos 15°​

Answers

Answered by yashpruthi
0

Answer:

you can find the value by sin(45+30)=sin75

both value are known

and cos(45-30)=cos15

Answered by welcome101
2

Answer:

 \sin75 =  \sin(30 + 45)  \\ ie \:  \:  \:  \sin(30 + 45)  =  \sin(30)  \cos(45)  +  \cos(30)  \sin(45 )  \\  ie \:  \:  \:  \sin(30 + 45)  =  \frac{1}{2}  \times  \frac{1}{ \sqrt{2} }  +  \frac{ \sqrt{3} }{2}  \times  \frac{1}{ \sqrt{2} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \frac{1 +  \sqrt{3} }{2 \sqrt{2} }  \\  \\  \cos(15)  =  \cos(45 - 30)  \\ ie \:  \:  \:  \cos(45 - 30)  =  \cos(45)  \times  \cos(30)  +  \sin(45)  \times  \sin(30)  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{ \sqrt{2} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }

Similar questions