Math, asked by preeti12357, 1 year ago

27 raised by 2 x minus M raised by 5 n and raised by 2 / 18 raised by 3 X m raised by 3 n

Attachments:

Answers

Answered by MOSFET01
4
\bold{Now,}

\frac{ {27}^{3} \times { (- m)}^{5} n }{ {18}^{3} \times {m}^{3} n}

 = \frac {({3}^{3})^{2}\times{(-1)}^{5}\times {m}^{5}\times n^{2}}{(2\times {3}^{2})^{3}\times {m}^{3}\times n}

 = \frac{(-1)\times{3}^{6}\times m^{5}\times n^{2}}{2^{3} \times3^{6}\times m^{3}\times n}

 = \frac{(-1)\times \cancel{3 \times 3 \times 3 \times 3 \times 3 \times 3} \times \cancel{m \times m \times m} \times {m}^{2} \times \cancel{n} \times n}{ {2}^{3} \times\cancel{3 \times 3 \times 3 \times 3 \times 3 \times 3} \times \cancel{m \times m \times m} \times\cancel{n}}

 = - {2}^{-3} {m}^{2} n

\underline{\text{Answer :}}

\boxed{\bold{- {2}^{-3}m^{2} n}}

MOSFET01: please give me edit option
Answered by MarkAsBrainliest
7
\underline{\text{Answer :}}

Now, \frac{ {27}^{2} \times {( - m)}^{5} {n}^{2} }{ {18}^{3} \times {m}^{3}n} \\ \\ = - \frac{( { {3}^{3} )}^{2} \times {m}^{5} \times {n}^{2} }{ { {(3}^{2} \times 2)}^{3} \times {m}^{3} \times n } \\ \\ = - \frac{ \cancel{ {3}^{6}} \times {m}^{5} \times {n}^{2} }{ \cancel{ {3}^{6}} \times {2}^{3} \times {m}^{3} \times n} \\ \\ = - \frac{ {m}^{2} \times \cancel{ {m}^{3} } \times \cancel{ n} \times n}{ {2}^{3} \times \cancel{ {m}^{3}} \times \cancel{n } } \\ \\ = - \frac{ {m}^{2} n}{8}

#MarkAsBrainliest
Similar questions