28. If A+B+C =180°, prove that : Sin² A + Sin²B - Sin²C = 2 Sin A Sin B CosC
Answers
Answered by
1
Step-by-step explanation:
sin^2A+sin^2B+sin^2C = 2+2cosA.cosB.cosC
I can write,
sin^2A as,
sin^2A = (1-cos(2A))/2
Therefore,
LHS =
= (1-cos(2A))/2+(1-cos(2B))/2+(1-cos(2C))/2
=3/2 - (cos(2A)+cos(2B)+cos(2C))
= 1/2(3 - (2cos(A+B)cos(A-B)+cos(2C)))
C = 180 - (A+B)
cos(C) = cos(180 - (A+B))
cos(C) = -cos(A+B)
Therefore,
LHS
=3/2 - (-2cos(C)cos(A-B)+cos(2C))
cos(2C) = 2cos^2(C) - 1
LHS
=1/2(3 - (-2cos(C)cos(A-B)+2cos^2(C)-1))
= 1/2(4 - (2cos(C)(cos(C)-cos(A-B)))
= 1/2(4 - 2cos(C)(-cos(A+B)-cos(A-B)))
= 1/2(4+2cos(C)(cos(A+B)cos(A-B)))
= 1/2(4+2cos(C)xx2cos(A)cos(B))
= 2 + 2cos(A)cos(B)cos(C)
Therefore, if A+B+C = 180,
Answered by
2
Answer:
this is the answer
hope it will help u
Attachments:
Similar questions
Chemistry,
2 months ago
Computer Science,
2 months ago
Hindi,
5 months ago
Biology,
5 months ago
Math,
11 months ago