28. If (b - c)^2, (c-a)^2, (a - b)^2 are in A.P. then (b - c), (c-a), (a - b) are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) None
Answers
Answered by
0
Answer:
Given that a,b,c are in A. P.
⇒2b=a+c……. (1)
And a
2
,b
2
,c
2
are in H. P.
b
2
1
−
d
2
1
=
c
2
1
−
b
2
1
b
2
a
2
(a–b)(a+b)
=
b
2
c
2
(b–c)(b+c)
ac
2
+bc
2
=a
2
b+a
2
c[∵a–b=b–c]
ac(c–a)+b(c–a)(c+a)=0
(c–a)(ab+bc+ca)=0
either c–a=0orab+bc+ca=0
either c=a or (a+c)b+ca=0 and then form (i) 2b
2
+ca=0
Either a=b=c or b
2
=a
2
−c
i.e. a,b,
2
−c
are in G. P. Hence Proved
Answered By
Similar questions