Math, asked by abaoypaul1458, 2 months ago

28. The difference of squares of two numbers is 180. The square of the smaller number is 8 times
the larger number. Find the two numbers.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

↝ Let assume that

  • Larger number be x

  • Smaller number be y.

According to statement,

↝ The difference of squares of two numbers is 180.

\purple{\rm :\longmapsto\: {x}^{2} -  {y}^{2}  = 180 -  -  - (1)}

According to second condition,

↝ The square of smaller number is 8 times the larger number.

 \red{\rm :\longmapsto\: {y}^{2} = 8x -  -  - (2)}

On substituting the value of equation (2), in (1) we get

\rm :\longmapsto\: {x}^{2} - 8x = 180

\rm :\longmapsto\: {x}^{2} - 8x - 180 = 0

\rm :\longmapsto\: {x}^{2} - 18x  + 10x- 180 = 0

\rm :\longmapsto\: x({x} - 18)  + 10(x- 18) = 0

\rm :\longmapsto\:(x - 18)(x + 10) = 0

\rm :\implies\:x = 18 \:  \:  \: or \: x =  - 10

Two cases arises

 \red{\bf :\longmapsto\:When \: x =  \: 18}

Put value of x = 18 on equation (2) we get

\rm :\longmapsto\: {y}^{2} = 8 \times 18

\rm :\longmapsto\: {y}^{2} = 144

\rm :\longmapsto\:y =  \:  \pm \:  \sqrt{144}

\bf\implies \:y \:  =  \:  \pm \: 12

 \red{\bf :\longmapsto\: \: When \: x =  \:  - 10}

On substituting the value of x = - 10 in equation (2), we get

\rm :\longmapsto\: {y}^{2} = 8 \times ( - 10)

\rm :\longmapsto\: {y}^{2} =  - 80

which is not possible.

Hence,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Numbers \:  are-\begin{cases} &\bf{18, \: 12} \\&\bf{ \:  \:  \:  \:  \: or} \\  &\bf{18, \:  -  \: 12} \end{cases}\end{gathered}\end{gathered}

Additional Information :

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions