Math, asked by gourlalu440, 7 months ago

29. The sides of a triangle are 16cm,
30cm, and 34cm. Its area is
O (a) 225 sq.cm.
O (b) 240 sq.cm
O (c) 22572 sq.cm
O (d) 250 sq.cm​

Answers

Answered by sakshi193452
16

Step-by-step explanation:

Given sides of triangles are a=16cm,b=30cm,c=34cm respectively

Semiperimeter s=

2

16+30+34

cm

=

2

80

=40cm

By heron's, area of the triangle is

s(s−a)(s−b)(s−c)

cm

2

=

40(40−16)(40−30)(40−34)

cm

2

=

40×24×10×6

cm

2

=

4×10×4×6×10×6

cm

2

=4×6×10cm

2

=240cm

2

Answered by prince5132
80

GIVEN :-

  • Sides of triangle are 16 cm , 30 cm , 34 cm.

TO FIND :-

  • The area of the triangle .

SOLUTION :-

Sides or triangle are,

  • a = 16 cm.
  • b = 30 cm.
  • c = 34 cm.

Now,

 \\  : \implies \displaystyle \sf \: perimeter \: of \:  \triangle \: (s) =  \frac{a + b + c}{2}  \\  \\  \\

 : \implies \displaystyle \sf \: perimeter \: of \:  \triangle \: (s) =  \frac{16 + 30 + 34}{2}  \\  \\  \\

 : \implies \displaystyle \sf \: perimeter \: of \:  \triangle \: (s)  =  \frac{80}{2}  \\  \\  \\

 : \implies \underline{ \boxed{ \displaystyle \sf \: perimeter \: of \:  \triangle \: (s)  = 40 \: cm}} \\  \\

_____________________

 \\   \dashrightarrow \displaystyle \sf \: Area\: of \:  \triangle \:  =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\

\dashrightarrow \displaystyle \sf \: Area\: of \:  \triangle \: =  \sqrt{40(40 - 16)(40 - 30)(40 - 34)}  \\  \\  \\

\dashrightarrow \displaystyle \sf \: Area\: of \:  \triangle \: =  \sqrt{40 \times 24 \times 10 \times 6}  \\  \\  \\

\dashrightarrow \displaystyle \sf \: Area\: of \:  \triangle \: =  \sqrt{57600}  \\  \\  \\

\dashrightarrow  \underline{ \boxed{\displaystyle \sf \: Area\: of \:  \triangle \: = 240 \: cm ^{2} }}

Similar questions