Math, asked by pacchulal07, 2 months ago

(2a + 1/a)(4a^2 - 2 + 1/a^2)​

Answers

Answered by anubhabkumar2020
1

Step-by-step explanation:

1

1:

1: 1

1: 1 Simplify —

1: 1 Simplify — 2

1: 1 Simplify — 2Equation at the end of step

1: 1 Simplify — 2Equation at the end of step1

1: 1 Simplify — 2Equation at the end of step1:

1: 1 Simplify — 2Equation at the end of step1: 1 1

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a)

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction 2.1 Subtracting a fraction from a whole

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction 2.1 Subtracting a fraction from a wholeRewrite the whole as a fraction using 2 as the denominator :

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction 2.1 Subtracting a fraction from a wholeRewrite the whole as a fraction using 2 as the denominator : 2a 2a • 2

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction 2.1 Subtracting a fraction from a wholeRewrite the whole as a fraction using 2 as the denominator : 2a 2a • 2 2a = —— = ——————

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction 2.1 Subtracting a fraction from a wholeRewrite the whole as a fraction using 2 as the denominator : 2a 2a • 2 2a = —— = —————— 1 2

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction 2.1 Subtracting a fraction from a wholeRewrite the whole as a fraction using 2 as the denominator : 2a 2a • 2 2a = —— = —————— 1 2 Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

1: 1 Simplify — 2Equation at the end of step1: 1 1 (((4•(a2))-————)-4)—)-a) (a2)((2a2STEP2:Rewriting the whole as an Equivalent Fraction 2.1 Subtracting a fraction from a wholeRewrite the whole as a fraction using 2 as the denominator : 2a 2a • 2 2a = —— = —————— 1 2 Equivalent fraction : The fraction thus generated looks different but has the same value as the wholeCommon denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Answered by AbhinavRocks10
3

Answer:

\sf\red{ Value \: of \: \frac{4a}{a^{2} - a - 1} }\green {= 8 }

  • Step-by-step explanation:

Given\rm\: 2a - \frac{2}{a}

\sf\implies \frac{2a^{2} - 2}{a} = 3

\sf\implies 2a^{2} - 2 = 3a

\sf\implies 2a^{2} - 3a - 2= 0

\sf\implies 2a^{2} -4a + 1a - 2 = 0

\sf\implies 2a(a-2) +1(a-2) = 0

\sf\implies (a-2)(2a+1) = 0

\sf\implies a-2 = 0 \:Or \:2a + 1 = 0

\sf\implies a = 2 \: Or \: a = \frac{-1}{2}

\begin{gathered}\sf Now,If \: a = 2, \: Value \: of \: \frac{4a}{a^{2} - a - 1 }\\= \frac{ 4\times 2 }{2^{2} - 2 - 1 } \\= \frac{8}{4-3}\\= 8 \end{gathered}

Therefore.,

\sf\red { Value \: of \: \frac{4a}{a^{2} - a - 1} }\green {= 8}

Similar questions