Math, asked by tech24, 9 months ago

(2a-5b-3c)whole square expand

Answers

Answered by Glorious31
12

\longrightarrow{\tt{ {(2a - 5b - 3c)}^{2}}}

The expansion of identity used :

\longrightarrow{\tt{{(a - b - c)}^{2}}}

\tt{\implies {(a)}^{2}+{(b)}^{2}+ {(c)}^{2} + 2ab + 2bc - 2ca}

Following the same expansion we can expand the given problem.

\longrightarrow{\tt{{(2a - 5b - 3c)}^{2}}}

\tt{ a \implies 2a}

\tt{b \implies 5b}

\tt{c \implies 3c}

Substituting the values ; we get :

\longrightarrow{\tt{{(2a - 5b - 3c)}^{2}}}

\longrightarrow{\tt{{(2a)}^{2} + {(-5b)}^{2} + {(-3c)}^{2} + 2 \times 2a \times (-5b) + 2 \times (-5b) \times (-3c) + 2 \times 2a \times (-3c)}}

Further simplification gives :

\longrightarrow{\tt{{(2a - 5b - 3c)}^{2}}}

\longrightarrow{\tt{{(4a)}^{2} + {(25b)}^{2} + {(9c)}^{2} - 20ab + 30bc - 12ac}}

So , the expansion of :

\tt{{(2a - 5b - 3c)}^{2}} is :

\longrightarrow{\boxed{\tt\red{{(4a)}^{2} + {(25b)}^{2} + {(9c)}^{2} - 20ab + 30bc - 12ac}}}

Answered by nisha382
7

Answer:

\huge\bold\star\red{Answer}\star

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Given:-

  • An expression (2a-5b-3c)

To find:-

  • (2a-5b-3c)^2

Solution:-

(2a-5b-3c)^2

={2a+(-5b)+(-3c)}^2

We will use the identity:-

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}   + {c}^{2}  + 2ab + 2bc + 2ca

let,a=2a

b=(-5b)

c=(-3c)

putting the value of a,b,c in the expression

 {(2a)}^{2}  +  {( - 5b)}^{2}  +  {( - 5c)}^{2}  + 2.2a.( - 5b) + 2.( - 5b)( - 3c) + 2.( - 3c).2a

 = 4 {a}^{2}  + 25 {b}^{2}  + 9 {c}^{2}  - 20ab + 30bc - 12ca

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\huge\green{Hope\:this\:help\:you}

Similar questions