Math, asked by Anonymous, 4 days ago

2cos 10+ sin100 +sin1000 + sin 10000 simplifies to ???

A) cos10
B) 3cos10
C) 4cos10
D) 5cos10​

Answers

Answered by user0888
60

\huge\text{\underline{\underline{Question}}}

What value does \text{$2\cos10^{\circ}+\sin100^{\circ}+\sin1000^{\circ}+\sin10000^{\circ}$} simplify to?

\huge\text{\underline{\underline{Explanation}}}

\text{$\sin100^{\circ}$}

\text{$=\sin(180^{\circ}-80^{\circ})$}

\text{$=\sin80^{\circ}$}

\text{$=\sin(90^{\circ}-10^{\circ})$}

\text{$=\boxed{\cos10^{\circ}}$}

\text{$\sin1000^{\circ}$}

\text{$=\sin(360^{\circ}\times3-80)^{\circ}$}

\text{$=\sin(360^{\circ}-80)^{\circ}$}

\text{$=-\sin80^{\circ}$}

\text{$=-\sin(90^{\circ}-10^{\circ})$}

\text{$=\boxed{-\cos10^{\circ}}$}

\text{$\sin10000^{\circ}$}

\text{$=\sin(360^{\circ}\times27-80)^{\circ}$}

\text{$=\sin(360^{\circ}-80)^{\circ}$}

\text{$=-\sin80^{\circ}$}

\text{$=-\sin(90^{\circ}-10^{\circ})$}

\text{$=\boxed{-\cos10^{\circ}}$}

\text{$\bold{Now,\ we\ know\ that\ -}$}

\text{$\bullet\ \sin100^{\circ}=\cos10^{\circ}$}

\text{$\bullet\ \sin1000^{\circ}=-\cos10^{\circ}$}

\text{$\bullet\ \sin10000^{\circ}=-\cos10^{\circ}$}

\huge\text{\underline{\underline{Final answer}}}

\text{$\bold{Finally,\ -}$}

\text{$\cdots\longrightarrow\boxed{2\cos10^{\circ}+\sin100^{\circ}+\sin1000^{\circ}+\sin10000^{\circ}=\cos10^{\circ}}$}

\bold{Option\ A\ is\ correct.}

\huge\text{\underline{\underline{Helpful guide}}}

\Large\text{\{Radian\}}

\large\text{$\longrightarrow$ Converting degree to radian}

\text{$\bullet\ \pi$ rad $=180^{\circ}$}

\Large\text{\{Trigonometric functions\}}

\large\text{$\longrightarrow$ Periods of functions}

\text{$\bullet\ \sin(\theta+2\pi)=\sin\theta$}

\text{$\bullet\ \cos(\theta+2\pi)=\cos\theta$}

\text{$\bullet\ \tan(\theta+\pi)=\tan\theta$}

\Large\text{\{Functions on the unit circle\}}

\large\text{$\longrightarrow x^{2}+y^{2}=1$ (Unit circle)}

\text{$\bullet\ \sin\theta=y$}

\text{$\bullet\ \cos\theta=x$}

\text{$\bullet\ \tan\theta=\dfrac{y}{x}$}

\Large\text{\{Sign changes\}}

\large\text{$\longrightarrow$ Positive signs in each quadrant}

\text{$\bullet$ 1st quadrant: All}

\text{$\bullet$ 2nd quadrant: $\sin\theta>0$}

\text{$\bullet$ 3rd quadrant: $\tan\theta>0$}

\text{$\bullet$ 4th quadrant: $\cos\theta>0$}

\Large\text{\{Reciprocal\}}

\large\text{$\longrightarrow$ Reciprocal functions}

\text{$\bullet\ \sin\theta\csc\theta=1$}

\text{$\bullet\ \tan\theta\cot\theta=1$}

\text{$\bullet\ \cos\theta\sec\theta=1$}

\Large\text{\{Identity\}}

\large\text{$\longrightarrow$ Trigonometric identities}

\text{$\bullet\ \sin^{2}\theta+\cos^{2}\theta=1$}

\text{$\bullet\ \tan^{2}\theta+1=\sec^{2}\theta$}

Answered by phelper27
32
  • please check the attached file
Attachments:
Similar questions