Math, asked by priyameena11101999, 1 year ago

2cos(π/13) cos (9π/13) +3cos(π/13)cos(5π/13)=0​

Answers

Answered by Sukhpreet85
7

Answer:

Step-by-step explanation:

See the attachment for answer

Attachments:
Answered by Anonymous
22

AnswEr:

  \\  \rm LHS = 2 \cos \frac{\pi}{13}  \:  \cos\frac{9\pi}{13}  +  \cos \frac{3\pi}{13}   +  \cos \frac{5\pi}{13}  \\  \\  \\    \implies \rm \: cos \: ( \frac{9\pi}{13}  +  \frac{\pi}{13} ) + cos \: ( \frac{9\pi}{13}  -  \frac{\pi}{13} ) +  \: cos \frac{3\pi}{13} \\   \\  \rm \:  + cos \:  \frac{5\pi}{13}  \\  \\  \\   \implies \rm \: cos \:  \frac{10\pi}{13}  +  \cos \:  \frac{8\pi}{13}  +  \cos \frac{3\pi}{13}   +  \cos \frac{5\pi}{13}  \\  \\  \\    \implies\rm \:  \cos(\pi -  \frac{3}{13}\pi )  +  \cos(\pi -  \frac{5\pi}{13} )  +  \cos( \frac{3\pi}{13} )  \\  \\  \rm \:  +  \cos( \frac{5\pi}{13} )  \\  \\   \\  \rm \implies  -  \cos \frac{3\pi}{13}  -  \cos \frac{5\pi}{13}   +  \cos \frac{3\pi}{13}  \\  \\  \rm \:  +  \cos \frac{5\pi}{13}  = 0 = RHS \\  \\  \qquad \sf ( \because \: cos(\pi - x) =  - cos \: x)

Similar questions