2cos^2 x - sinx +1 =0
Answers
Answered by
14
2cos^2 x-sinx +1=0
2(1-sin^2 x) - sin x +1=0
2-2sin ^2 x-sin x +1=0
-2 sin^2 x- sin x +3=0
2sin ^2 x + sin x -3=0
2sin^2 x +3 sinx -2 sin x -3=0
sin x(2 sinx +3)-(2sin x+3)=0
(2 sin x+3)( sin x-1)=0
therefore
2sin x+3=0 or sin x-1=0
sin x= -3/2 or sin x= 1
sin x=1
sinx = sin 90
x=90 degrees
2(1-sin^2 x) - sin x +1=0
2-2sin ^2 x-sin x +1=0
-2 sin^2 x- sin x +3=0
2sin ^2 x + sin x -3=0
2sin^2 x +3 sinx -2 sin x -3=0
sin x(2 sinx +3)-(2sin x+3)=0
(2 sin x+3)( sin x-1)=0
therefore
2sin x+3=0 or sin x-1=0
sin x= -3/2 or sin x= 1
sin x=1
sinx = sin 90
x=90 degrees
Answered by
2
Answer:
Step-by-step explanation:
2cos^2 x-sinx +1=0
2(1-sin^2 x) - sin x +1=0
2-2sin ^2 x-sin x +1=0
-2 sin^2 x- sin x +3=0
2sin ^2 x + sin x -3=0
2sin^2 x +3 sinx -2 sin x -3=0
sin x(2 sinx +3)-(2sin x+3)=0
(2 sin x+3)( sin x-1)=0
therefore
2sin x+3=0 or sin x-1=0
sin x= -3/2 or sin x= 1
sin x=1
sinx = sin 90
x=90 degrees
Similar questions