Math, asked by jyotirmay52, 1 year ago

2cos(4x)+1/2cos(x)+1= (2cosx-1)*(2cos2x-1). Prove it.​

Answers

Answered by MaheswariS
63

Answer:

\frac{2\:cos4x+1}{2cosx+1}=(2cos2x-1)(2cosx-1)

Step-by-step explanation:

\frac{2\:cos4x+1}{2cosx+1}

Using

\boxed{cos2A=2\:cos^2A-1}

=\frac{2(2cos^22x-1)+1}{2cosx+1}

=\frac{4cos^22x-2+1}{2cosx+1}

=\frac{4cos^22x-1}{2cosx+1}

=\frac{(2cos2x)^2-1^2}{2cosx+1}

Using

\boxed{a^2-b^2=(a+b)(a-b)}

=\frac{(2cos2x-1)(2cos2x+1)}{2cosx+1}

=\frac{(2cos2x-1)(2(2cos^2x-1)+1)}{2cosx+1}

=\frac{(2cos2x-1)(4cos^2x-1)}{2cosx+1}

=\frac{(2cos2x-1)((2cosx)^2-1^2)}{2cosx+1}

=\frac{(2cos2x-1)(2cosx-1)(2cosx+1)}{2cosx+1}

=\frac{(2cos2x-1)(2cosx-1)}{1}

=(2cos2x-1)(2cosx-1)

Answered by silu12
21

Answer:

here is your answer.......

Attachments:
Similar questions