Math, asked by CoolDeepPop10e, 7 months ago

2cos2theta + √2sintheta =2​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

2 \cos(2 \theta)  +  \sqrt{2 \sin(\theta) }  = 2

 =  >  \sqrt{2 \sin(\theta) }  = 2(1 -  \cos(2\theta) )

 =  > 2 \sin(\theta)  = 16 \sin^{4} (\theta)

 =  >8 \sin^{4} (\theta)  -  \sin(\theta)  = 0

 =  >  \sin(\theta) (8 \sin^{3} (\theta)  - 1) = 0

 =  >  \sin(\theta) (2 \sin(\theta) - 1)(4 \sin^{2} (\theta)   + 2 \sin(\theta)  + 1) = 0

 =  >  \sin(\theta)  = 0 \:  \: or \:  \:  \sin(\theta)  =  \frac{1}{2}

 =  > \theta = n\pi \:  \: or \:  \: \theta = n\pi + ( - 1)^{n}  \frac{\pi}{6}

Similar questions