Math, asked by alex233715, 1 year ago

2cos4x+1/2cosx+1 = (2cosx-1) (2cos2x-1)​

Answers

Answered by FelisFelis
11

Answer:

Step-by-step explanation:

Consider the provided equation.

\frac{2cos4x+1}{2cosx+1} =(2cosx-1) (2cos2x-1)

Now consider the right hand side. Multiply the right hand side with \frac{(2cosx+1)}{(2cosx+1)}

(2cosx-1)(2cos2x-1)\times \frac{2cosx+1}{2cosx+1}

\frac{(4cos^2x-1)(2cos2x-1)}{2cosx+1}

Now use the identity: \cos^2x=\dfrac{1+\cos2x}2

By using the above identity:

\frac {(\frac{4(1+cos2x)}{2}-1)(2cos2x-1)}{2cosx+1}

\frac {(2+2cos2x-1)(2cos2x-1)}{2cosx+1}

\frac {(2cos2x+1)(2cos2x-1)}{2cosx+1}

\frac{4cos^22x-1}{2cosx+1}

Again use the identity: \cos^2x=\dfrac{1+\cos2x}2

\frac{\frac{4(1+cos4x)}{2}-1}{2cosx+1}

\frac{2+2cos4x-1}{2cosx+1}

\frac{2cos4x+1}{2cosx+1}

Hence, proved.

Similar questions