Math, asked by alex233715, 1 year ago

2cosec2x + cosecx = secx cotx/2 prove it​

Answers

Answered by MaheswariS
32

Answer:

\bf{2\:cosec2x+cosecx=cot\frac{x}{2}\:secx}

Step-by-step explanation:

2\:cosec2x+cosecx

=2(\frac{1}{sin2x})+\frac{1}{sinx}

=\frac{2\:sinx+sin2x}{sin2x\:sinx}

=\frac{2\:sinx+2\:sinx\:cosx}{sin2x\:sinx}

=\frac{2sinx(1+cosx)}{sin2x\:sinx}

=\frac{2(1+cosx)}{sin2x}

=\frac{2(1+cosx)}{2\:sinx\:cosx}

=\frac{1+cosx}{sinx\:cosx}

=\frac{1+2cos^2\frac{x}{2}-1}{(2\:sin\frac{x}{2}\:cos\frac{x}{2})cosx}

=\frac{2cos^2\frac{x}{2}}{(2\:sin\frac{x}{2}\:cos\frac{x}{2})cosx}

=\frac{cos\frac{x}{2}}{sin\frac{x}{2}\:cosx}

=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}*\frac{1}{cosx}

=cot\frac{x}{2}secx

\implies\:2\:cosec2x+cosecx=cot\frac{x}{2}\:secx

Answered by TanikaWaddle
11

Given : 2\csc 2x+\csc x =cot\frac{x}{2}\sec x

Step-by-step explanation:

2\csc 2x+\csc x \\\\2(\frac{1}{\sin 2x})+\frac{1}{\sin x}\\\\2(\frac{1}{2\sin x\cos x})+\frac{1}{\sin x}\\\\\frac{1}{\sin x\cos x}+\frac{1}{\sin x}\\\\\text{taking LCM}\\\\\frac{1+\cos x }{\sin x\cos x}\\\\\frac{1+\cos x }{\sin x}\times \frac{1}{\cos x}\\\\\frac{1+\cos x }{\sin x}\times \sec x\\\\\frac{2\cos^2\frac{x}{2}}{2\sin^2\frac{x}{2}.\cos^2\frac{x}{2}}\times \sec x\\\\\cot\frac{x}{2}\sec x

hence proved

#Learn more :

https://brainly.in/question/11301132

Similar questions