Physics, asked by CunningKing, 4 months ago

2m³ volume of a gas at a pressure of 4 × 10⁵ Nm⁻² is compressed adiabatically so that its volume becomes 0.5m³. Find the new pressure. Compare this with the pressure that would result if the compression was isothermal. Calculate work done in each process. γ = 1.4.


No spams pleaseeee its urgent!

Answers

Answered by AdorableMe
11

\large\underline{\underline{\mathbb{\color{magenta}{GIVEN :}}}}

2m³ volume of a gas at a pressure of 4 × 10⁵ Nm⁻² is compressed adiabatically so that its volume becomes 0.5m³.

  • V₁ = 2m³
  • P₁ =  4 × 10⁵ Nm⁻²
  • V₂ = 0.5m³
  • γ = 1.4

\large\underline{\underline{\mathbb{\color{magenta}{TO\ FIND :}}}}

  • The new pressure.
  • Compare this with the pressure that would result if the compression was isothermal.
  • Calculate work done in each process.

\large\underline{\underline{\mathbb{\color{magenta}{SOLUTION :}}}}

In adiabatic process,

\sf{P_1V_1^{\gamma}=P_2V_2^{\gamma}}

\sf{\implies P_2=4\times 10^5 \bigg[\dfrac{2}{0.5} \bigg]^{1.4}}

\sf{\implies P_2=4\times10^5(4)^{1.4}}

\boxed{\sf{\implies P_2=2.8\times10^6\ Nm^{-2}}}

____________________

In isothermal process,

\sf{P_1V_1=P_2V_2}

\sf{\implies P_2= \dfrac{P_1V_1}{V_2} }

\sf{\implies P_2= \dfrac{4\times10^5\times2}{0.5} }

\boxed{\sf{\implies P_2=1.6\times10^6\ Nm^{-2} }}

________________________

Now,

Work done in adiabatic process -

\sf{W=\dfrac{P_2V_2-P_1V_1}{\gamma-1} }

\sf{\implies W=\dfrac{(2.8 \times 10^6 \times 0.5)-(4\times10^5\times2)}{1.4-1}  }

\boxed{\sf{\implies W=1.48\times10^6\ J  }}

____________________

Work done in isothermal process -

\sf{W = 2.3026RT\ log \dfrac{V_2}{V_1}}

\sf{\implies W=2.3026P_1V_1\ log\dfrac{V_2}{V_1}}

\sf{\implies W= 2.3026\times4\times10^5\times 2log \bigg(\dfrac{1}{4} \bigg) }

\boxed{\sf{\implies W=  -1.1\times10^2\ J}}

Answered by XxItsDivYanShuxX
4

\huge{\red{\boxed{\underline{\underline{\mathtt{\color{gold}{Given:↓}}}}}}}

2m³ volume of a gas at a pressure of 4 × 10⁵ Nm⁻² is compressed adiabatically so that its volume becomes 0.5m³.

V₁ = 2m³

V₁ = 2m³P₁ = 4 × 10⁵ Nm⁻²

V₁ = 2m³P₁ = 4 × 10⁵ Nm⁻²V₂ = 0.5m³

V₁ = 2m³P₁ = 4 × 10⁵ Nm⁻²V₂ = 0.5m³γ = 1.4

\huge{\red{\boxed{\underline{\underline{\mathtt{\color{magenta}{To\:Find:↓}}}}}}}

The new pressure.

Compare this with the pressure that would result if the compression was isothermal.

Calculate work done in each process.

\huge{\red{\boxed{\underline{\underline{\mathtt{\color{navy}{Solution:↓}}}}}}}

In adiabatic process,

\sf{P_1V_1^{\gamma}=P_2V_2^{\gamma}}

\sf{\implies P_2=4\times 10^5 \bigg[\dfrac{2}{0.5} \bigg]^{1.4}}

\sf{\implies P_2=4\times10^5(4)^{1.4}}

\boxed{\sf{\implies P_2=2.8\times10^6\ Nm^{-2}}}

____________________

In isothermal process,

\sf{P_1V_1=P_2V_2}P

\sf{\implies P_2= \dfrac{P_1V_1}{V_2} }

\sf{\implies P_2= \dfrac{4\times10^5\times2}{0.5} }

\boxed{\sf{\implies P_2=1.6\times10^6\ Nm^{-2} }}

________________________

Now,

Work done in adiabatic process -

\sf{W=\dfrac{P_2V_2-P_1V_1}{\gamma-1} }

\sf{\implies W=\dfrac{(2.8 \times 10^6 \times 0.5)-(4\times10^5\times2)}{1.4-1} }

\boxed{\sf{\implies W=1.48\times10^6\ J }}

____________________

Work done in isothermal process -

\sf{W = 2.3026RT\ log \dfrac{V_2}{V_1}}

\sf{\implies W=2.3026P_1V_1\ log\dfrac{V_2}{V_1}}

\sf{\implies W= 2.3026\times4\times10^5\times 2log \bigg(\dfrac{1}{4} \bigg) }

\boxed{\sf{\implies W= -1.1\times10^2\ J}}

Similar questions