Math, asked by tewatialucky00, 23 days ago

2nd question answer ​

Attachments:

Answers

Answered by Ritesh2008
1

Answer:

x= 1 and y =2

Step-by-step explanation:

pls mark me as brainlist

Answered by talpadadilip417
1

Step-by-step explanation:

 \color{red}\[ \left.\begin{array}{l} \tt \dfrac{5}{x-1}+\dfrac{1}{y-2}=2 \quad \ldots(1) \\ \\ \tt  \dfrac{6}{x-1}-\dfrac{3}{y-2}=1 \quad \ldots(2) \end{array}\right\} \text { Let } \tt \dfrac{1}{x-1}= u   \:  \: and \:  \:  \:  \dfrac{1}{y - 2}  = v\]

So, our equations become

 \tt\[ 5 u+v=2 \quad \ldots(3) \\  \tt \quad 6 u-3 v=1 \quad \ldots(4) \]

Thus, our equations are

 \color{blue} \text{\( \tt 5 u+v=2 \) ...(3) }  \\ \color{blue} \text{\( \tt 6 u-3 v=1 \) ...(4)}

 \color{navy} \[ \begin{array}{l} \text{ From (3) }\\ \tt 5 u+v=2 \\  \tt v=2-5 u \end{array} \]

Putting value of v in (4)

 \pmb{ \color{olive}\[ \begin{array}{l} \tt 6 u-3 v=1 \\ \\  \tt 6 u-3(2-5 u)=1 \\ \\ \tt  6 u-6+15 u=1 \\  \\ \tt 6 u+15 u=1+6 \\ \\ \tt  21 u=7 \end{array} \]}

 \pmb{ \color{olive}\[ \begin{array}{l} \tt u=\dfrac{7}{21} \\  \\  \tt u=\dfrac{1}{3} \end{array} \]}

 \text{Putting \( \tt u=\dfrac{1}{3} \) in equation (3).}

 \pmb{ \color{magenta} \[ \begin{array}{l} \tt \[ 5 u+v=2 \] \\ \\  \tt 5\left(\dfrac{1}{3}\right)+v=2 \\  \\  \tt\dfrac{5}{3}+v=2 \\  \\ \tt v=2-\dfrac{5}{3} \\ \\  \tt v=\dfrac{2(3)-5}{3} \\ \\  \tt v=\dfrac{6-5}{3} \\  \\  \tt v=\dfrac{1}{3} \\   \\ \text{ Hence, \(  \boxed{\tt u=\frac{1}{3} } \:  \: \& \:  \:  \:   \boxed{ \tt v=\frac{1}{3} }\)}\end{array} \]}

But we need to find x & y.

 \pmb{\color{darkcyan}\[ \begin{array}{l|| l}   \tt u =\dfrac{1}{x-1} & \tt v =\dfrac{1}{y-2} \\ \\  \tt \dfrac{1}{3}=\dfrac{1}{x-1} & \tt \dfrac{1}{3}=\dfrac{1}{y-2} \\  \\ \tt x-1=3 & \tt y-2=3 \\  \\ \tt x=3+1 & \tt y=3+2 \\ \\  \tt x=4 & \tt y=5 \end{array} \]}

So, x=4, y=5 is the solution of our equations

Similar questions