Math, asked by Dipshikhasumi3995, 1 year ago

π/2Prove that ∫ log tan x dx=0 0

Answers

Answered by rishu6845
0

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by ujalasingh385
0

Answer:

0

Step-by-step explanation:

In this question,

We have to evaluate

I = \int\limits^\frac{\pi}{2}_0 {log\ tanx} \, dx      .......(i)

I = \int\limits^\frac{\pi}{2}_0 {log\ tan(\frac{\pi}{2}\ -\ x)} \, dx

I = \int\limits^\frac{\pi}{2}_0 {log\ cotx} \, dx        .......(ii)

Adding equation (i) and (ii) we get,

I + I = \int\limits^\frac{\pi}{2}_0 {log\ tanx} \, dx + \int\limits^\frac{\pi}{2}_0 {log\ tanx} \, dx

2I = \int\limits^\frac{\pi}{2}_0 {log\ tanx\ +\ log\ cotx} \, dx

2I = \int\limits^\frac{\pi}{2}_0 {log\ (tanx.Cotx})\, dx

2I = \int\limits^\frac{\pi}{2}_0 {log\ tanx.\frac{1}{tanx}} \, dx

2I = \int\limits^\frac{\pi}{2}_0 {log1} \, dx

Since, log1 = 0

2I = 0

I = 0

Similar questions