Math, asked by ADITYAJ5021, 11 months ago

π/4
∫ dx/a² cos²x-b² sin²x (a > b > 0) ,Evaluate it.
0

Answers

Answered by rishu6845
0

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by ujalasingh385
0

Answer:

\mathbf{\frac{1}{2ab}log\frac{a-b}{a+b}}

Step-by-step explanation:

In this question,

We have to evaluate

\int\limits^\frac{\pi}{4}_0 {\frac{1}{a^{2}cos^{2}x\ -\ b^{2}sin^{2}x} \, dx

Multiplying by sec²x in numerator and denominator we get,

\int\limits^\frac{\pi}{4}_0 {\frac{sec^{2}x}{a^{2}sec^{2}xcos^{2}x\ -\ b^{2}sec^{2}xsin^{2}x} \, dx

\int\limits^\frac{\pi}{4}_0 {\frac{sec^{2}x}{a^{2}\ -\ b^{2}tan^{2}x} \, dx

Since sec^{2}x\ =\ \frac{1}{cos^{2}x}

Now, on substituting tanx = t we get

sec²xdx = dt

Putting the values and taking \frac{1}{b^{2}} we get

\frac{1}{b^{2}}\int\limits^1_0{\frac{1}{\frac{a^{2}}{b^{2}}\ -\ t^{2}}} \, dt

\frac{1}{2ab}^{1}_{0}[{log\frac{\frac{a}{b}-t}{\frac{a}{b}+t}]

Using upper and lower limits we get,

\mathbf{\frac{1}{2ab}log\frac{a-b}{a+b}}

Similar questions