Math, asked by ViragSheth7078, 9 months ago

2root3x2-5x+root find zero polynomial and verify the relation between the zeros and coefficients

Answers

Answered by kartik2507
0

Answer:

question is incomplete

if your question is as follows

Step-by-step explanation:

if your question is

2 \sqrt{3}  {x}^{2}  - 5x +  \sqrt{3}  \\ 2 \sqrt{3}  {x}^{2}  - 2x - 3x +  \sqrt{3}  = 0 \\ 2x( \sqrt{3} x - 1) -  \sqrt{3} ( \sqrt{3} x - 1) = 0 \\ ( \sqrt{3} x - 1)(2x -  \sqrt{3} ) = 0 \\  \sqrt{3} x - 1 = 0 \:  \:  \:  \:  \:  \: 2x -  \sqrt{3}  = 0 \\  \sqrt{3} x = 1 \:  \:  \:  \:  \:  \:  \:  \: 2x =  \sqrt{3}  \\ x =  \frac{1}{ \sqrt{3} }  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ \sqrt{3} }{2}

sum of zeroes = -b/a = -(-5)/2√3 = 5/2√3

 \frac{1}{ \sqrt{3} }  +  \frac{ \sqrt{3} }{2}  \\  =  \frac{2 + 3}{2 \sqrt{3} }  \\  =  \frac{5}{2 \sqrt{3} }

product of zeroes = c/a = √3/2√3 = 1/2

 \frac{1}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{2}  \\  =  \frac{1}{2}

Hope you get your answer correctly

Similar questions