Math, asked by ab12345677, 1 year ago

2root6-root5/3root5-2root6

Answers

Answered by sulagnapalit8263
14

Given:- 2root6-root5/3root5-2root6

To find:- 2root6-root5/3root5-2root6=?

Solution:-

\frac{2 \sqrt{6}- \sqrt{5} }{3 \sqrt{5} -2 \sqrt{6 } }

 = \frac{2 \sqrt{6}- \sqrt{5} }{3 \sqrt{5} -2 \sqrt{6 } } \times   \frac{3 \sqrt{5} +2 \sqrt{6 } }{ 3 \sqrt{5} +2 \sqrt{6 }}

 \frac{2 \sqrt{6} \times 3 \sqrt{5}   - 2 \sqrt{6}  \times 2 \sqrt{6} -  \sqrt{5}  \times 3 \sqrt{5}  -  \sqrt{5} \times 2 \sqrt{6} }{ {(3 \sqrt{5}) }^{2}  -  {(2 \sqrt{6}) }^{2} }

  =  \frac{6 \sqrt{6}  + 4 \times 6 - 3 \times 5 - 2 \sqrt{30} }{ {(3 \sqrt{5} )}^{2} -  {(2 \sqrt{6} )}^{2}   }

  = \frac{4 \sqrt{30 }  + 9}{45 - 24}

  = \frac{9 + 4 \sqrt{30}}{21}

Hence , 2root6-root5/3root5-2root6= 9+4√30/21 (ans)

Answered by hukam0685
16

Step-by-step explanation:

Given that:

 \frac{2 \sqrt{6}  -  \sqrt{5} }{3 \sqrt{5}  - 2 \sqrt{6} }  \\  \\

To find: Simplified form by rationalization

Solution: Multiply both numerator and denominator by the RF

 \frac{2 \sqrt{6}  -  \sqrt{5} }{3 \sqrt{5}  - 2 \sqrt{6} } \times  \frac{3 \sqrt{5} + 2 \sqrt{6}  }{3 \sqrt{5} + 2 \sqrt{6}  }   \\  \\ = \frac{(2 \sqrt{6} -  \sqrt{5})(3 \sqrt{5}  + 2 \sqrt{6})   }{( {3 \sqrt{5} })^{2} - ( {2 \sqrt{6} })^{2}  }  \\  \\  \because(x - y)(x + y) =  {x}^{2}  -  {y}^{2}  \\  \\ = \frac{6 \sqrt{30} + 4 \times 6 - 3 \times 5 - 2 \sqrt{30}  }{9 \times 5 - 4 \times 6}  \\  \\ =\frac{4 \sqrt{30}  + 24 - 15}{45 - 24}  \\  \\  =  \frac{9+4 \sqrt{30} }{21}  \\  \\

Thus,

\bold{\frac{2 \sqrt{6}  -  \sqrt{5} }{3 \sqrt{5}  - 2 \sqrt{6} }  =  \frac{9+4 \sqrt{30}}{21}}  \\ \\

Hope it helps you.

Similar questions