2sec²θ–sec⁴θ–2cosec²θ+cosec⁴θ = cor⁴θ–tan⁴θ,Prove it by using trigonometric identities.
Answers
Answered by
1
SOLUTION :
Given :
2sec²θ–sec⁴θ–2cosec²θ+cosec⁴θ = cot⁴θ–tan⁴θ
L.H.S = 2sec²θ–sec⁴θ–2cosec²θ+cosec⁴θ
= (cosec⁴θ - 2cosec²θ) - ( sec⁴θ - 2sec²θ)
= (cosec⁴θ - 2cosec²θ + 1) - (sec⁴θ - 2sec²θ +1)
= ((cosec²θ)² - 2cosec²θ + 1²) - (( sec²θ )² - 2sec²θ + 1²)
=( cosec²θ - 1)² - (sec²θ -1)²
[ a² + b² - 2ab = (a - b)²]
= (cot²θ)² - (tan²θ)²
[ cosec²θ- 1= cot²θ , sec²θ - 1 = tan²θ]
LHS = cot⁴θ - tan⁴θ = RHS
HOPE THIS ANSWER WILL HELP YOU..
Answered by
0
Here I am using A instead of theta .
LHS
= 2sec²A-sec⁴A-2cosec²A+cosec⁴A
Rearranging the terms ,we get
= (cosec⁴A-sec⁴A)-2(cosec²A-sec²A)
=[(cosec² A)²-(sec²A)²]
-2(cosec² A-sec²A)
= (cosec² A+sec ²A)(cosec²A-sec²A)
-2(cosec²A-sec²A)
[ By algebraic identity ,
( a + b )( a - b ) = a² - b² ]
=(cosec² A - sec²A)[cosec² A+sec²A-2]
=[(1+cot²A)-(1+tan²A)]
[( 1 + cot²A )+( 1 + tan²A ) - 2 ]
[ By Trigonometric identities,
i ) cosec² A = 1 + cot²A,
ii ) sec²A = 1 + tan²A ]
= [ 1 + cot²A - 1 - tan²A ]
[ 1 + cot²A + 1 + tan²A - 2 ]
= ( cot²A - tan²A )( cot²A + tan²A )
= ( cot²A )² - ( tan²A )²
= cot⁴A - tan⁴A
= RHS
•••••
LHS
= 2sec²A-sec⁴A-2cosec²A+cosec⁴A
Rearranging the terms ,we get
= (cosec⁴A-sec⁴A)-2(cosec²A-sec²A)
=[(cosec² A)²-(sec²A)²]
-2(cosec² A-sec²A)
= (cosec² A+sec ²A)(cosec²A-sec²A)
-2(cosec²A-sec²A)
[ By algebraic identity ,
( a + b )( a - b ) = a² - b² ]
=(cosec² A - sec²A)[cosec² A+sec²A-2]
=[(1+cot²A)-(1+tan²A)]
[( 1 + cot²A )+( 1 + tan²A ) - 2 ]
[ By Trigonometric identities,
i ) cosec² A = 1 + cot²A,
ii ) sec²A = 1 + tan²A ]
= [ 1 + cot²A - 1 - tan²A ]
[ 1 + cot²A + 1 + tan²A - 2 ]
= ( cot²A - tan²A )( cot²A + tan²A )
= ( cot²A )² - ( tan²A )²
= cot⁴A - tan⁴A
= RHS
•••••
Similar questions