Math, asked by devjangid15, 7 months ago

2sec2A- sec4A- 2cosec2A+ cosec4A=1/ tan4A - tan4A

Attachments:

Answers

Answered by MoodyCloud
8

To prove:-

\bigstar \sf   \: 2 \:  {sec}^{2}  \ \theta   -  {sec}^{4}  \:  \theta - 2  \: {cosec}^{2} \:   \theta +  {cosec}^{4}  \:  \theta =  \cfrac{1}{ {tan}^{4}  \:  \theta }  -  {tan}^{4}  \:  \theta

Solution:-

Take L.H.S

  \star \sf   \: 2 \:  {sec}^{2}  \ \theta   -  {sec}^{4}  \:  \theta - 2  \: {cosec}^{2} \:   \theta +  {cosec}^{4}  \:  \theta

 \longrightarrow \sf ( {cosec}^{4}  \:  \theta - 2 \:  {cosec}^{2}   \:  \theta) - ( {sec}^{4}  \:  \theta - 2 \:  {sec}^{2}  \:  \theta

 \longrightarrow \sf ( {cosec}^{4} \:  \theta - 2 \:  {cosec}^{2}   \:  \theta + 1) - (sec^{4} \:  \theta - 2 \:  {sec}^{2}  \:  \theta + 1)

 \longrightarrow \sf ( {cosec}^{2}  \:  \theta - 1)^{2}  -  {(sec^{2}  - 1)}^{2}

 \longrightarrow \sf  {(cot^{2}   \: \theta)}^{2}  - ( {sec}^{2}  \:  \theta - 1)^{2}

 \longrightarrow \sf  {cot}^{4}  \:  \theta -  {tan}^{4}  \:  \theta

 \longrightarrow \sf  \cfrac{1}{ {tan}^{4}   \: \theta} \:  -  {tan}^{4}  \:  \theta

Hence, Proved.

L.H.S = R.H.S

Similar questions