Math, asked by sulfathshaji123, 6 months ago

2sin²30°-2cos²45°+tan²60°​

Answers

Answered by vinoladsouza17
0

Step-by-step explanation:2(1/2)^2- 2(1/√2)^2+ √3^2 =2(1/4)- 2(1/4)+ 3 =2/4- 2/4 + 3 =2-2+3 =2-5=-3

Answered by brokendreams
0

The answer of this question is \frac{5}{2}.

Step-by-step explanation:

We are given,

2*(Sin)^{2} 30\°-2*(Cos)^{2}45\°+(tan)^{2}60\°

and we have to find he value of this trigonometric equation.

  • Trigonometric values used,
  1. Sin30\°=\frac{1}{2}
  2. Cos45\°=\frac{1}{\sqrt{2} }
  3. Tan60\°=\sqrt{3}
  • Solving given trigonometric equation

We have

2*(Sin)^{2} 30\°-2*(Cos)^{2}45\°+(tan)^{2}60\°

and we have the values of required trigonometric ratios,

Sin30\°=\frac{1}{2}   , Cos45\°=\frac{1}{\sqrt{2} }   and Tan60\°=\sqrt{3}.

by simply putting the values we get our answer,

2*(\frac{1}{2} )^{2} -2*(\frac{1}{\sqrt{2} } )^{2} +(\sqrt{3} )^{2}

2*\frac{1}{4} -2*\frac{1}{2}+3

   =\frac{1}{2} -1+3

    = \frac{1}{2}+2

    =\frac{1+4}{2}

     =\frac{5}{2}

In this way we get the answer of this question as \frac{5}{2}.

Similar questions