2sinA.cosA=2tanA/1+tan squareA
Answers
Answered by
2
l.h.s= sin2A = sin(A+A)
= sinA.cosA+cosA.sinA
=2SinA.cosA----------------we call 1st eqn
[...1=cos2A+sin2A is a formula]
We assume that 2sinA.cosA/1
=2sinA.cosA/sin2A+cos2A
Let take'cos2A' Dividing on both numinator and denominator by 'cos2A'
=2sinA.CosA/cos2A/cos2A+sin2A/Cos2A
=2sinA/cosA/cos2A/cos2A + Sin2A/cos2A [sinA/cosA=tanA] [sin2A/cos2A=tan2A]
=2tanA/1+tan2A
L.H.S=R.H.S
= sinA.cosA+cosA.sinA
=2SinA.cosA----------------we call 1st eqn
[...1=cos2A+sin2A is a formula]
We assume that 2sinA.cosA/1
=2sinA.cosA/sin2A+cos2A
Let take'cos2A' Dividing on both numinator and denominator by 'cos2A'
=2sinA.CosA/cos2A/cos2A+sin2A/Cos2A
=2sinA/cosA/cos2A/cos2A + Sin2A/cos2A [sinA/cosA=tanA] [sin2A/cos2A=tan2A]
=2tanA/1+tan2A
L.H.S=R.H.S
Answered by
5
Take RHS
2TanA/(1+Tan^2A)
2SinA/CosA /(1+Sin^2A/Cos^2A)
2SinA/CosA /(Cos^2A+Sin^2A/Cos^2A )
2SinA/CosA/(1/Cos^2A)
2SinACos^2A/CosA
2SinACosA = LHS
Hence proved
2TanA/(1+Tan^2A)
2SinA/CosA /(1+Sin^2A/Cos^2A)
2SinA/CosA /(Cos^2A+Sin^2A/Cos^2A )
2SinA/CosA/(1/Cos^2A)
2SinACos^2A/CosA
2SinACosA = LHS
Hence proved
Similar questions