2sino = x + 1/x , then x = ?
Answers
Answered by
11
Theta is written as A.
Answer:
sinA ± cosAi
Step-by-step explanation:
Here,
⇒ 2sinA = x + 1 / x
⇒ 2sinA = ( x^2 + 1 ) / x
⇒ 2x.sinA = x^2 + 1
⇒ x^2 + 1 - 2x.sinA = 0
⇒ x^2 - 2x.sinA + 1 = 0
Using Quadratic Formula :
for an equation ax^2 + bx + c = 0, x = [ - b ± √( b^2 - 4ac ) ] / 2a
Thus, here,
⇒ x = [ - ( - 2sinA ) ± √{ ( - 2sinA )^2 - 4( 1 )( 1 ) } ] / 2
⇒ x = [ 2sinA ± √( 4sin^2 A - 4 ) ] / 2
⇒ x = [ 2sinA ± √{ 4( sin^2 A - 1 ) } / 2
⇒ x = [ 2sinA ± √{ - 4cos^2 A } ] / 2 { 1 - sin^2 A = cos^2 A }
⇒ x = [ 2sinA ± 2cosA√( - 1 ) ] / 2
⇒ x = sinA ± cosAi { where i represents iota }
Answered by
15
Attachments:
Similar questions