2sinx square -3sin
x+1=0
Answers
Step-by-step explanation:
Given :-
2 Sin² X - 3 Sin X + 1 = 0
To find:-
Solve the equation ?
Solution :-
Given equation is 2 Sin² X - 3 Sin X + 1 = 0
=> 2 Sin² X - 2 Sin X - Sin X + 1 = 0
=> 2 Sin X ( Sin X - 1 ) - 1 ( Sin X - 1 ) = 0
=> ( Sin X - 1 ) ( 2 Sin X - 1 ) = 0
=> ( Sin X - 1 ) = 0 (or) ( 2 Sin X - 1 ) = 0
=> Sin X = 1 (or) 2 Sin X = 1
=> Sin X = 1 (or) Sin X = 1/2
=> Sin X = Sin 90° (or) Sin X = Sin 30°
=>X = 90° (or) X = 30°
Answer:-
The roots of the given equation are 30° and 90°
Check:-
I) If X = 30° then
LHS = 2 Sin²30°-3 Sin 30° +1
=> 2 (1/2)²-3(1/2)+1
=> 2(1/4)-(3/2)+1
=> (2/4)-(3/2)+1
=> (1/2)-(3/2)+1
=> (1-3)/2 +1
=> (-2/2)+1
=> -1+1
=> 0
=> RHS
LHS = RHS is true for X = 30°
and
ii)If X = 90° then
LHS = 2 Sin²90°-3 Sin 90° +1
=> 2 (1)²-3(1)+1
=> 2(1)-(3)+1
=> 2-3+1
=> 3-3
=> 0
=> RHS
LHS = RHS is true for X = 90°
Used formulae:-
- Sin 30° = 1/2
- Sin 90° = 1
- Since it is a quadratic equation,it has two roots .