2tan⁻¹(cosx) = tan⁻¹(2cosecx),Solve it.
Answers
Answered by
4
Solution :
Now, 2 tan⁻¹(cosx) = tan⁻¹(2 cosecx)
⇒ tan⁻¹{2 cosx/(1 - cos²x)} = tan⁻¹(2/sinx)
⇒ 2 cosx/sin²x = 2/sinx
⇒ cosx/sinx * 1/sinx = 1/sinx
⇒ cotx/sinx = 1/sinx
⇒ cotx sinx = sinx
⇒ cotx sinx - sinx = 0
⇒ sinx (cotx - 1) = 0
∴ either sinx = 0 or, cotx - 1 = 0
⇒ sinx = 0 or, cotx = 1
⇒ sinx = sin0 or, cotx = cot(π/4)
⇒ x = 0 or, x = π/4
∴ the required solution is
x = 0 , π/4
Answered by
7
Answer:
tex]\huge\underline\mathfrak\purple{Solution}[/tex]
Attachments:
Similar questions