Math, asked by green333, 11 months ago

2tan20°\ cot70° + 3cot65°\2tan25°​

Answers

Answered by Anonymous
22

Solution :

 \implies\tt  \frac{2 \tan20 \degree }{ \cot70\degree} +  \frac{3 \cot65\degree }{2 \tan25\degree } \\ \\\implies \tt  \frac{2 \tan20 \degree }{ \cot(90 \degree - 20\degree)} +  \frac{3 \cot(90 \degree - 25)\degree }{2 \tan25\degree } \\  \\\implies \tt  \frac{2 \tan20 \degree }{ \tan20\degree} +  \frac{3 \tan25\degree }{2 \tan25\degree } \\  \\\implies \tt \tan20\degree +  \tan25\degree \\  \\\implies  \tt \tan(20 + 25) \\ \\   \large \boxed{\tt \green{  \tan45 \degree = 1}}

Important identities :

\implies \tt  \sin(90 -  \theta) =  \cos \theta \\ \\\implies \tt  \cos(90 -  \theta) =  \sin \theta \\ \\\implies \tt  \csc(90 -  \theta) =  \sec \theta \\ \\\implies \tt  \sec(90 -  \theta) =  \csc \theta \\ \\\implies \tt  \tan(90 -  \theta) =  \cot \theta \\ \\\implies \tt  \cot(90 -  \theta) =  \tan \theta \\ \\ \tt \implies {\sin}^{2} +{\cos}^{2}=1 \\ \\\tt \implies {\tan}^{2} + 1 = {\sec}^{2} \\ \\ \tt \implies 1 + {\cot}^{2} = {\csc}^{2}

Similar questions