2tanA=√3then findsinA, cosA
Answers
Answered by
0
Answer:
secA + tanA = (2+ √5). ………………(1).
Formula:-
sec^2 A - tan^2 A = 1.
or, (sec A- tan A).(sec A + tan A)= 1.
or, (sec A - tan A).(2+√5) = 1.
or, sec A - tan A = 1/(2+√5).
or, sec A - tan A = 1×(2-√5)/(2+√5)×(2-√5). = (2-√5)/(4–5). = -2 +√5.
or, sec A - tan A = (-2+√5). …………(2).
Adding eqn.(1) and (2).
2.sec A = 2√5.
or, sec A = √5
or, cos A = 1/√5. Answer.
Answered by
0
Answer:
2tanA=/3,
ஃtanA=/3/2
we know that
tanA= opp/adj
we need to find hypotenuse
by using Pythagoras theorem
opp^2+adj^2=hyp^2
=(/3)^2+(2)^2
=3+4=7
hyp^2=7
ஃhyp=/7
we know that
sinA=opp/hyp
cosA=adj/hyp
ஃsinA=/3//7
cosA=2//7
here(/)represents root.
please mark brainliest and follow.
Similar questions