Math, asked by Anonymous, 5 months ago

(2x-1) (x - 3) = (x + 5) (x-1)​

Answers

Answered by Anonymous
9

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

(2x-1) (x - 3) = (x + 5) (x-1)

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

 =  > (2x-1) (x - 3) = (x + 5) (x-1)

 =  > 2x(x - 3) - 1(x - 3) = x(x - 1) + 5(x - 1)

 =  > 2 {x}^{2}  - 6x - x + 3 =  {x}^{2}  - x + 5x - 5

 =  > 2 {x}^{2}  -  {x}^{2}  - 6x - x  + x - 5x =  - 5 - 3

 =  >  {x}^{2}  - 6x - 5x =  - 8

 =  >  {x}^{2}  - 11x + 8 = 0

Here we use quadratic formula to find out the solution:-

Here,a=1 ; b=-11 & c=8

 =  > x =  \frac{ - b± \sqrt{ {b}^{2}  - 4ac} }{2a}

 =  >  x =  \frac{ - ( - 11)± \sqrt{ {( - 11)}^{2}  - 4(8)}  }{2}

 =  > x =  \frac{11± \sqrt{121 - 32} }{2}

 \bold{\red{=  > x =  \frac{11± \sqrt{89} }{2}}}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
309

\bold{\underline{ \Huge\sf \color{grey}{GIVEN\dag}}}

 \large\tt(2x-1) (x - 3) = (x + 5) (x-1)

  \bold{\underline   {\Huge{\displaystyle\sf \gray{TO \: FIND \dag}}}}

  \bold\bull \:  \tt{The \: value \: of \: x}

  \bold{\underline{\Huge{\displaystyle\sf \gray{SOLUTION \dag}}}}

\implies\bf(2x-1) (x - 3) = (x + 5) (x-1)

\implies\bf2x(x - 3) - 1(x - 3) = x(x - 1) + 5(x - 1)

\implies\bf2 {x}^{2} - 6x - x + 3 = {x}^{2} - x + 5x - 5

\implies\bf2 {x}^{2} - {x}^{2} - 6x - x + x - 5x = - 5 - 3

\implies\bf{x}^{2} - 6x - 5x = - 8

\implies \bf{x}^{2} - 11x + 8 = 0

Here we use quadratic formula to find out the solution:-

Here,a=1 ; b=-11 & c=8

\implies \bf{x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a}}

\implies \bf{x = \frac{ - ( - 11)± \sqrt{ {( - 11)}^{2} - 4(8)} }{2}}

\implies\bf{x = \frac{11± \sqrt{121 - 32} }{2}}

\implies\bold{\color{fuchsia}{ x = \frac{11± \sqrt{89} }{2}}}

Similar questions