√2x^2-2x-√3=0 the root of the equation
Answers
Answer:
x=\frac{\sqrt{2}\left(-\sqrt{\sqrt{6}+1}+1\right)}{2}
x=
2
2
(−
6
+1
+1)
Step-by-step explanation:
2
x
2
−2x−
3
=0
ax^{2}+bx+c=0
\frac{-b±\sqrt{b^{2}-4ac}}{2a}
±
\sqrt{2}x^{2}-2x-\sqrt{3}=0
2
x
2
−2x−
3
=0
ax^{2}+bx+c=0
\sqrt{2}
a-2b-\sqrt{3}
c\frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\sqrt{2}\left(-\sqrt{3}\right)}}{2\sqrt{2}}
x=
2
2
−(−2)±
(−2)
2
−4
2
(−
3
)
-2
x=\frac{-\left(-2\right)±\sqrt{4-4\sqrt{2}\left(-\sqrt{3}\right)}}{2\sqrt{2}}
x=
2
2
−(−2)±
4−4
2
(−
3
)
-4\sqrt{2}
x=\frac{-\left(-2\right)±\sqrt{4+\left(-4\sqrt{2}\right)\left(-\sqrt{3}\right)}}{2\sqrt{2}}
x=
2
2
−(−2)±
4+(−4
2
)(−
3
)
-4\sqrt{2}
-\sqrt{3}
x=\frac{-\left(-2\right)±\sqrt{4+4\sqrt{6}}}{2\sqrt{2}}
x=
2
2
−(−2)±
4+4
6
44\sqrt{6}
x=\frac{-\left(-2\right)±\sqrt{4\sqrt{6}+4}}{2\sqrt{2}}
x=
2
2
−(−2)±
4
6
+4
4+4\sqrt{6}
x=\frac{-\left(-2\right)±2\sqrt{\sqrt{6}+1}}{2\sqrt{2}}
x=
2
2
−(−2)±2
6
+1
-22
x=\frac{2±2\sqrt{\sqrt{6}+1}}{2\sqrt{2}}
x=
2
2
2±2
6
+1
x=\frac{2±2\sqrt{\sqrt{6}+1}}{2\sqrt{2}}
±22\sqrt{1+\sqrt{6}}
x=\frac{2\sqrt{\sqrt{6}+1}+2}{2\sqrt{2}}
x=
2
2
2
6
+1
+2
2+2\sqrt{1+\sqrt{6}}
2\sqrt{2}
x=\frac{\sqrt{2}\left(\sqrt{\sqrt{6}+1}+1\right)}{2}
x=
2
2
(
6
+1
+1)
x=\frac{2±2\sqrt{\sqrt{6}+1}}{2\sqrt{2}}
±2\sqrt{1+\sqrt{6}}
2
x=\frac{-2\sqrt{\sqrt{6}+1}+2}{2\sqrt{2}}
x=
2
2
−2
6
+1
+2
2-2\sqrt{1+\sqrt{6}}
2\sqrt{2}
x=\frac{\sqrt{2}\left(-\sqrt{\sqrt{6}+1}+1\right)}{2}
x=
2
2
(−
6
+1
+1)
x=\frac{\sqrt{2}\left(\sqrt{\sqrt{6}+1}+1\right)}{2}
x=
2
2
(
6
+1
+1)