Math, asked by as1743594, 6 months ago

2x^2 dy=(x^2+y^2)dx




solve with homogeneous​

Answers

Answered by BrainlyPopularman
13

GIVEN :

• Differentiate equation –

  \\ \implies \bf \: 2 {x}^{2}dy = ( {x}^{2} +  {y}^{2} )dx\\

TO FIND :

• Solution of differential equation = ?

SOLUTION :

  \\ \implies \bf \: 2 {x}^{2}dy = ( {x}^{2} +  {y}^{2} )dx\\

  \\ \implies \bf \: \dfrac{dy}{dx} = \dfrac{{x}^{2} +  {y}^{2}}{2 {x}^{2}} \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

• It's a homogeneous differential equation .

• Now Let's put y = vx

• So that –

  \\ \implies \bf \: \dfrac{dy}{dx} =v + x \dfrac{dv}{dx} \\

• Put the value of dy/dx in eq.(1) –

  \\ \implies \bf \: v + x \dfrac{dv}{dx} =\dfrac{{x}^{2} +  {(vx)}^{2}}{2 {x}^{2}}\\

  \\ \implies \bf \: v + x \dfrac{dv}{dx} =\dfrac{{x}^{2} +{v}^{2} {x}^{2} }{2 {x}^{2}}\\

  \\ \implies \bf \: v + x \dfrac{dv}{dx} =\dfrac{{x}^{2}(1 +{v}^{2})}{2 {x}^{2}}\\

  \\ \implies \bf \: v + x \dfrac{dv}{dx} =\dfrac{1 +{v}^{2}}{2}\\

  \\ \implies \bf \:  x \dfrac{dv}{dx} =\dfrac{1 +{v}^{2}}{2} - v\\

  \\ \implies \bf \:  x \dfrac{dv}{dx} =\dfrac{1 +{v}^{2} - 2v}{2} \\

  \\ \implies \bf \:\dfrac{2dv}{1 +{v}^{2} - 2v} =\dfrac{dx}{x} \\

  \\ \implies \bf \:\dfrac{2dv}{{(v - 1)}^{2}} =\dfrac{dx}{x} \\

• Integration on both sides –

  \\ \implies \bf \: \int\dfrac{2dv}{{(v - 1)}^{2}} = \int\dfrac{dx}{x} \\

• Put v - 1 = t :

• And –

  \\ \implies \bf \: \dfrac{dv}{dt} = 1\\

  \\ \implies \bf \:dv=dt\\

• So that –

  \\ \implies \bf \: \int\dfrac{2dt}{{(t)}^{2}} = \int\dfrac{dx}{x} \\

  \\ \implies \bf \: -  \dfrac{2}{t} = log(x) + c \\

• Replace 't' –

  \\ \implies \bf \: -  \dfrac{2}{v - 1} = log(x) + c \\

• Now replace 'v' –

  \\ \implies \bf \:  \dfrac{2}{1 -  \dfrac{y}{x} } = log(x) + c \\

  \\  \large\implies{ \boxed{ \bf  \dfrac{2x}{x -y} = log(x) + c}} \\

Similar questions