2x^2+x-508=0 finds the roots of quadratic Eqaution using squaring method.
Answers
Answer:
2x
2
+x−508
view step
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
x_{1}
x_{2}
ax^{2}+bx+c=0
2x^{2}+x-508=0
2x
2
+x−508=0
view step
ax^{2}+bx+c=0
\frac{-b±\sqrt{b^{2}-4ac}}{2a}
±
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-508\right)}}{2\times 2}
x=
2×2
−1±
1
2
−4×2(−508)
view step
1
x=\frac{-1±\sqrt{1-4\times 2\left(-508\right)}}{2\times 2}
x=
2×2
−1±
1−4×2(−508)
view step
-42
x=\frac{-1±\sqrt{1-8\left(-508\right)}}{2\times 2}
x=
2×2
−1±
1−8(−508)
view step
-8-508
x=\frac{-1±\sqrt{1+4064}}{2\times 2}
x=
2×2
−1±
1+4064
view step
14064
x=\frac{-1±\sqrt{4065}}{2\times 2}
x=
2×2
−1±
4065
view step
22
x=\frac{-1±\sqrt{4065}}{4}
x=
4
−1±
4065
view step
x=\frac{-1±\sqrt{4065}}{4}
±-1\sqrt{4065}\approx 63.757352517
x=\frac{\sqrt{4065}-1}{4}
x=
4
4065
−1
view step
x=\frac{-1±\sqrt{4065}}{4}
±\sqrt{4065}\approx 63.757352517
-1
x=\frac{-\sqrt{4065}-1}{4}
x=
4
−
4065
−1
view step
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
\frac{-1+\sqrt{4065}}{4}\approx 15.689338129
x_{1}
\frac{-1-\sqrt{4065}}{4}\approx -16.189338129
x_{2}
2x^{2}+x-508=2\left(x-\frac{\sqrt{4065}-1}{4}\right)\left(x-\frac{-\sqrt{4065}-1}{4}\right)
2x
2
+x−508=2(x−
4
4065
−1
)(x−
4
−
4065
−1
)
is true
Next step