Math, asked by NafishaNasim, 3 months ago

(2x+3)² + (2x-3)
please tell​

Answers

Answered by prabhjotkaur761
1
(a+b)^2 = a^2+ b^2 + 2ab
(2x)^2 + 3^2 + 2 X 2x X 3 + 2x - 3
4x^2 + 9 + 12x + 2x - 3
4x^2 + 14x + 6
Answered by Anonymous
7

\large\bold\red{Question}

(2x+3)² + (2x-3)

please tell

\large\bold\blue{\underline{\underline{Solution}}}

\sf{Step\:1:} Using ( a + b )² = a² + 2ab + b², expand the expression

 \implies \sf(2x) {}^{2}  + 2 \times 2x \times 3 + 3 {}^{2}

To raise a product to a power, raise each factor to that power > (2x)²

 \implies \sf4x {}^{2}  + 2 \times 2x \times 3 + 3 {}^{2}

\large\bold\red{\underline{\underline{WHY?}}}

\bold\red{Why\:raise\:each\:factor\:to\:a\:power?}

Because the property of raising the product to a power states that you need to raise each factor to that same power:

\sf{\underline{\underline{NOTE\:this\:is\:just \:an\:example.}}}

\red{\boxed{\sf{(a \times b) {}^{n}  = a {}^{n}  \times b {}^{n}}}}

Next, Calculate the product

 \implies \sf4x {}^{2}  + 12x + 3 {}^{2}

Then, Evaluate the power

 \implies \sf4x {}^{2}  + 12x + 9

\large\bold\red{Note:} When there is a ‘+’ in front of an parentheses, the expression remains the same.

 \implies \sf4x {}^{2}  + 12x + 9 + 2x - 3

\sf{Step\:2} Collect like terms by adding their coefficients

 \implies \sf4x {}^{2}  +  \red{12x} + 9  \red{+ 2x}  - 3

 \implies \sf(12 + 2)x

Next, Add the numbers

 \implies \sf14x

\sf{Lastly:} Subtract the numbers

 \sf4x {}^{2}  + 12x +  \red9 + 2x  \red{- 3}

 \implies \sf4x {}^{2}  + 14x + 6

 \sf \: thus \: the \: answer \: is \:  \green{\boxed{\boxed{\sf{4x {}^{2}  + 14x + 6}}}}

hope this help!

Similar questions