Math, asked by vidhigundecha56, 1 month ago

-2x+3y=10;2x-5y=6 solve

Answers

Answered by Anonymous
1

Answer:

2

+

3

=

1

0

;

2

5

=

6

Step-by-step explanation:

Answered by BrainlyTwinklingstar
2

Answer

\sf \dashrightarrow -2x + 3y = 10 \: \: --- (i)

\sf \dashrightarrow 2x - 5y = 6 \: \: --- (ii)

Finding x by equation i,

\sf \dashrightarrow -2x + 3y = 10

\sf \dashrightarrow -2x = 10 - 3y

\sf \dashrightarrow x = \dfrac{10 - 3y}{-2}

Now, we can find the value of y by the second equation,

\sf \dashrightarrow 2x - 5y = 6

\sf \dashrightarrow 2 \bigg( \dfrac{10 - 3y}{-2} \bigg) - 5y = 6

\sf \dashrightarrow \dfrac{20 - 6y}{2} - 5y = 6

\sf \dashrightarrow \dfrac{20 - 6y - 10y}{2} = 6

\sf \dashrightarrow \dfrac{20 - 16y}{2} = 6

\sf \dashrightarrow 20 - 16y = 6 \times 2

\sf \dashrightarrow 20 - 16y = 12

\sf \dashrightarrow -16y = 12 - 20

\sf \dashrightarrow -16y = -8

\sf \dashrightarrow y = \dfrac{-8}{-16}

\sf \dashrightarrow y = \dfrac{1}{2}

Now, we can find the value of x by first equation.

\sf \dashrightarrow -2x + 3y = 10

\sf \dashrightarrow -2x + 3 \bigg( \dfrac{1}{2} \bigg) = 10

\sf \dashrightarrow -2x + \dfrac{3}{2} = 10

\sf \dashrightarrow -2x = 10 - \dfrac{3}{2}

\sf \dashrightarrow -2x = \dfrac{20 - 3}{2}

\sf \dashrightarrow -2x = \dfrac{17}{2}

\sf \dashrightarrow x = \dfrac{\dfrac{17}{2}}{-2}

\sf \dashrightarrow x = \dfrac{17}{2} \times \dfrac{-1}{2}

\sf \dashrightarrow x = \dfrac{-17}{4}

Hence, the values of x and y are \sf \dfrac{-17}{4} and \sf \dfrac{1}{2} respectively.

Similar questions