2x + 3y = 13 and xy = 4, then the value of 8x3 + 27y3 is ___________?
Answers
Answer:
793
Step-by-step explanation:
2x +3y = 13-----(1)
xy =6-----(2)
8x³ +27y³
= (2x)³ +(3y)³
= (2x+3y)³ - 3*2x*3y(2x+3y) [using (a+b)³ = a³+b³+3ab(a+b)]
= (13)³- 18 * 6 *13 [ using (1) and (2)]
= 2197 - 1404
=793
i hope this helps you friend
dont forget to mark me as brainiest
EXPLANATION.
⇒ 2x + 3y = 13. - - - - - (1).
⇒ xy = 4. - - - - - (2).
As we know that,
Formula of :
⇒ (a + b)³ = a³ + 3a²b + 3ab² + b³.
Using this formula in this question, we get.
Cubing on both sides of the equation (1), we get.
⇒ (2x + 3y)³ = (13)³.
⇒ (2x)³ + 3(2x)²(3y) + 3(2x)(3y)² + (3y)³ = 2197.
⇒ 8x³ + 3(4x²)(3y) + 3(2x)(9y²) + 27y³ = 2197.
⇒ 8x³ + 36x²y + 54xy² + 27y³ = 2197.
⇒ 8x³ + 27y³ + 36x²y + 54xy² = 2197.
⇒ 8x³ + 27y³ + 18xy(2x + 3y) = 2197.
Put the value of equation (1) and equation (2), we get.
⇒ 8x³ + 27y³ + 18(4)(13) = 2197.
⇒ 8x³ + 27y³ + 936 = 2197.
⇒ 8x³ + 27y³ = 2197 - 936.
⇒ 8x³ + 27y³ = 1261.
∴ The value of 8x³ + 27y³ is equal to 1261.