Social Sciences, asked by privatemessage, 1 year ago

2x+3y+5=0,3x-2y-12 by elimination method
 \sqrt{x}  +  \sqrt{y}  = 7 \\  \sqrt{x }  -  \sqrt{y }  = 2

Answers

Answered by sheil2
1
I hope it will help you
Attachments:
Answered by ishwarsinghdhaliwal
1

2x + 3y =  - 5 \:  \:  \:  \:  \:  \: ......(1) \\ 3x - 2y = 12 \:  \:  \:  \:  \:  \: .....(2) \\ multiply \: equcation \: (1) \: with \: 3 \: and \: equation \: (2) \: with \: (2) \: we \: get \\  6x + 9y =  - 15 \:  \:  \:  \:  \: ....(3) \\  6x - 4y = 24 \:  \:  \:  \:  \:  \: .....(4) \\ subtract \: equation \:( 4) \: from \: (3) \: we \: get \\ 13y =  - 39 \\ y =  - 3 \\ substitute \: the \: value \: of \: y =  - 3 \: in  \:  equation \: (1) \\ 2x + 3( - 3) =  - 5 \\ 2x - 9 =  - 5 \\ 2x =  - 5 + 9 \\ 2x =  4 \\ x= 2 \\  \\  \\  \\  \sqrt{x }  +  \sqrt{y}  = 7 \:  \:  \:  \: ....(1) \\  \sqrt{x}  -  \sqrt{y}  = 2 \:  \:  \:  \: ....(2) \\ add \: equation \: (1) and \: (2) \: we \: get \\ 2 \sqrt{x}  = 9 \\  \sqrt{x}  =  \frac{9}{2}  \\ squaring \: on \: both \: sides \\ x  = \frac{81}{4}  \\ substitute \: the \: value \: of \: x=   \frac{81}{4} \:  in \: equation  \: (1) \\  \sqrt{ \frac{81}{4} }  +  \sqrt{y}  = 7 \\  \frac{9}{2}  +  \sqrt{y}  = 7 \\  \sqrt{y}  = 7 -  \frac{9}{2}  \\  \sqrt{y}  =  \frac{14 - 9}{2}  \\  \sqrt{y}  =  \frac{5}{2}  \\ squaring \: on \: both \: sides \\ y =  \frac{25}{4}

privatemessage: thanks my next question you will wair
Similar questions