Math, asked by RiddhiA3363, 10 months ago

2x-3y=5 and7x+4y=9 by substitution method

Answers

Answered by Vamprixussa
14

Given equations

2x-3y=5\\\\

2x=5+3y

x=\dfrac{5+3y}{2}

Substituting the value of x in the second equation, we get,

7x+4y=9

\implies 7(\dfrac{5+3y}{2} ) +4y=9

\implies \dfrac{35+21y}{2} +4y=9

\implies 35+21y+8y=18

\implies 29y=18-35

\implies \boxed{\boxed{\bold{ y = \dfrac{-17}{29} }}}}}}}}

Substituting the value of y in x, we get,

\implies \boxed{\boxed{\bold{x=\frac{30}{29} }}}}}

                                                   

Answered by charliejaguars2002
7

To find:

Isolate the x and y.

Solutions:

\displaystyle \mathsf{2x-3y=5}}

Add by 3y from both sides of an equation.

\displaystyle \mathsf{2x-3y+3y=5+3y}}

Solve.

\displaystyle \mathsf{2x=5+3y}}

Then, divide by 2 from both sides of an equation.

\displaystyle \mathsf{\frac{2x}{2}=\frac{5}{2}+\frac{3y}{2}   }}

Solve.

\displaystyle \mathsf{x=\frac{5+3y}{2}}}

Substitution on x=5+3y/2.

\displaystyle \mathsf{7*\frac{5+3y}{2}+4y=9 }}

Use distributive property. (expand.)

\displaystyle \mathsf{DISTRIBUTIVE \ PROPERTY}}

\displaystyle \mathsf{A(B+C)=AB+AC}}

\displaystyle \mathsf{7*\frac{5+3y}{2}+4y=9=y=-\frac{17}{29}  }}

Solve.

\displaystyle \mathsf{\frac{5+3\left(\displaystyle -\frac{17}{29}\right)}{2}=\frac{47}{29}}}

Subtract.

47-17=30

\Large\boxed{\mathsf{y=-\frac{17}{29}, x=\frac{30}{29}  }}}

Answer:

So, the solutions is y=-17/29, and x=30/29.

Similar questions