Math, asked by lakshmisrikar123, 4 months ago

2x +3y+z=9,x+2y+3z=6,3x+y+2z=8 solve by gauss elimination method​

Answers

Answered by ReddyShivs
2

Answer:

The answers are:

X=35/18

Y=29/18

Z=5/18

Answered by stefangonzalez246
0

Given Data:  2x +3y+z=9,                  x+2y+3z=6,                      3x+y+2z=8.

To Find: Solve by Guass Elimination Method.

Solution:

  • Mark the equations As 1, 2 and 3 etc.    

2x +3y+z=9 ------ ( 1 ),   x+2y+3z=6 ------ ( 2 ),  3x+y+2z=8 ------ ( 3 ).

  • Multiplying -2 with (2) we get, -2x-4y-+6z = -12.
  • Adding ( 4 ) with ( 1 ) we get,  

                                       -2x-4y-6z = -12\\+\\2x +3y+z=9   ;  0-y-5z =-3 -----( 4 ).

  • Multiplying -3 with ( 2 ) we get, -3x-6y-9z = -18. Add ( 3 ) to it.

                                     -3x-6y-9z = -18\\+\\3x+y+2z=8; 0-5y-7z=-10 ----- ( 5 ).

  • By Multiplying -5 with ( 4 ) we get z, 5y+25z=15  ; Add it with ( 5 ).

                                      5y+25z=15\\+\\-5y-7z=-10   ;    18z = 5

                                       z = \frac{5}{18}.

  • By substituting z value in ( 4 ) we get y, -y - 5(\frac{5}{18} ) = -3.

                                     y=3-\frac{25}{18}.             ;                 y= \frac{54-25}{18}

                                        y=\frac{29}{18}.

  • By substituting y and z in ( 2 ) we get x,

                                    x+ 2(\frac{29}{18} ) + 3(\frac{5}{18} ) = 6 \\\\x+ \frac{58}{18}+\frac{15}{18} = \frac{108}{18} \\\\x = \frac{108-73}{18} \\\\x=\frac{35}{18}

  • Hence the Value of x, y, z is \frac{35}{18},  \frac{29}{18}, \frac{5}{18}.
Similar questions