Math, asked by arminkot11, 6 months ago

solve the equation with step by step explaination​

Attachments:

Answers

Answered by Anonymous
13

Solution:-

 \rm \implies \:  \dfrac{ {x}^{2}  - (x + 2)(x + 3)}{7x + 1}  =  \dfrac{2}{3}

 \rm \implies \:  \dfrac{ {x}^{2} - ( {x}^{2} + 3x + 2x + 6)  }{7x + 1}  =  \dfrac{2}{3}

\rm \implies \:  \dfrac{ {x}^{2}  -  {x}^{2}  - 5x - 6}{7x + 1}  =  \dfrac{2}{3}

  \rm \implies \:  \dfrac{ - 5x - 6}{7x + 1}  =  \dfrac{2}{3}

Using cross multiplication method

 \rm \implies \:  3( - 5x - 6) = 2(7x + 1)

 \rm \implies \:  - 15x - 18 = 14x + 2

 \rm \implies \:  - 15x - 14x = 2 + 18

 \implies \rm \:  - 29x = 20

 \rm \implies \: x  =  - \dfrac{20}{29}

So answer is

\rm \implies \: x  =  - \dfrac{20}{29}

More about linear equation

Linear equation, statement that a first-degree polynomial—that is, the sum of a set of terms, each of which is the product of a constant and the first power of a variable—is equal to a constant.

A linear equation is an algebraic equation that forms a straight line when graphed. Each term is either a constant, or the product of a constant and a single variable.

Answered by ItzCuteboy8
25

\underline{\orange{\bf Given :-}}

\implies\sf{\dfrac{x^{2} - (x + 2)(x + 3)}{7x + 1} = \dfrac{2}{3}}

\underline{\orange{\bf To \: Find :-}}

\implies\sf{Value \:  of \:  \boxed{\bf{x}}}

\underline{\orange{\bf Solution :-}}

\implies\sf{\dfrac{x^{2} - (x + 2)(x + 3)}{7x + 1} = \dfrac{2}{3}}

\implies\sf\dfrac{x^{2} - (x^{2} + 3x + 2x + 6)}{7x + 1} = \dfrac{2}{3}

\implies\sf\dfrac{x^{2} - (x^{2} + 5x + 6)}{7x + 1} = \dfrac{2}{3}

\implies\sf\dfrac{\cancel{x^{2}} \cancel{- x^{2}} - 5x - 6}{7x + 1} = \dfrac{2}{3}

\implies\sf\dfrac{- 5x - 6}{7x + 1} = \dfrac{2}{3}

\implies\sf - 15x - 18 = 14x + 2

\implies\sf - 15x - 14x = 2 + 18

\implies\sf - 29x = 20

\implies\underline{\boxed{\sf x = \dfrac{20}{- 29}}}

Hence, the value of x is \sf\dfrac{20}{- 29}

______________________________

Additional Information :-

1) + × + = +

Example :-

  • 5x × 2x = 10x²

2) + × - = -

Example :-

  • 5x × (- 2x) = - 10x²

3) - × - = +

Example :-

  • (- 5x) × (- 2x) = 10x²

______________________________


ItzArchimedes: Superb :clapping:
prince5132: Nice !
Similar questions